These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 31797166)

  • 21. Disturbance and productivity interactions mediate stability of forest composition and structure.
    O'Connor CD; Falk DA; Lynch AM; Swetnam TW; Wilcox CP
    Ecol Appl; 2017 Apr; 27(3):900-915. PubMed ID: 28029193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparing modern and presettlement forest dynamics of a subboreal wilderness: does spruce budworm enhance fire risk?
    Sturtevant BR; Miranda BR; Shinneman DJ; Gustafson EJ; Wolter PT
    Ecol Appl; 2012 Jun; 22(4):1278-96. PubMed ID: 22827135
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post-fire forest regeneration shows limited climate tracking and potential for drought-induced type conversion.
    Young DJN; Werner CM; Welch KR; Young TP; Safford HD; Latimer AM
    Ecology; 2019 Feb; 100(2):e02571. PubMed ID: 30516290
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prolonged tropical forest degradation due to compounding disturbances: Implications for CO
    Brando PM; Silvério D; Maracahipes-Santos L; Oliveira-Santos C; Levick SR; Coe MT; Migliavacca M; Balch JK; Macedo MN; Nepstad DC; Maracahipes L; Davidson E; Asner G; Kolle O; Trumbore S
    Glob Chang Biol; 2019 Sep; 25(9):2855-2868. PubMed ID: 31237398
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simulating fire regimes in the Amazon in response to climate change and deforestation.
    Silvestrini RA; Soares-Filho BS; Nepstad D; Coe M; Rodrigues H; Assunção R
    Ecol Appl; 2011 Jul; 21(5):1573-90. PubMed ID: 21830703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fire-mediated dieback and compositional cascade in an Amazonian forest.
    Barlow J; Peres CA
    Philos Trans R Soc Lond B Biol Sci; 2008 May; 363(1498):1787-94. PubMed ID: 18267911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fires in Seasonally Dry Tropical Forest: Testing the Varying Constraints Hypothesis across a Regional Rainfall Gradient.
    Mondal N; Sukumar R
    PLoS One; 2016; 11(7):e0159691. PubMed ID: 27441689
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Response of Sierra Nevada forests to projected climate-wildfire interactions.
    Liang S; Hurteau MD; Westerling AL
    Glob Chang Biol; 2017 May; 23(5):2016-2030. PubMed ID: 27801532
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA.
    Scholl AE; Taylor AH
    Ecol Appl; 2010 Mar; 20(2):362-80. PubMed ID: 20405793
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes.
    Hoffmann WA; Geiger EL; Gotsch SG; Rossatto DR; Silva LC; Lau OL; Haridasan M; Franco AC
    Ecol Lett; 2012 Jul; 15(7):759-68. PubMed ID: 22554474
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Landscape development, forest fires, and wilderness management.
    Wright HE
    Science; 1974 Nov; 186(4163):487-95. PubMed ID: 17790369
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aboveground carbon sequestration in dry temperate forests varies with climate not fire regime.
    Gordon CE; Bendall ER; Stares MG; Collins L; Bradstock RA
    Glob Chang Biol; 2018 Sep; 24(9):4280-4292. PubMed ID: 29855108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change.
    Pellegrini AF; Anderegg WR; Paine CE; Hoffmann WA; Kartzinel T; Rabin SS; Sheil D; Franco AC; Pacala SW
    Ecol Lett; 2017 Mar; 20(3):307-316. PubMed ID: 28074597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contrasting seasonal leaf habits of canopy trees between tropical dry-deciduous and evergreen forests in Thailand.
    Ishida A; Diloksumpun S; Ladpala P; Staporn D; Panuthai S; Gamo M; Yazaki K; Ishizuka M; Puangchit L
    Tree Physiol; 2006 May; 26(5):643-56. PubMed ID: 16452078
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Shifts in functional traits elevate risk of fire-driven tree dieback in tropical savanna and forest biomes.
    Pellegrini AF; Franco AC; Hoffmann WA
    Glob Chang Biol; 2016 Mar; 22(3):1235-43. PubMed ID: 26426539
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dry forest resilience varies under simulated climate‐management scenarios in a central Oregon, USA landscape.
    Halofsky JS; Halofsky JE; Burcsu T; Hemstrom MA
    Ecol Appl; 2014; 24(8):1908-25. PubMed ID: 29185662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effectiveness of mechanical thinning and prescribed burning on fire behavior in Pinus nigra forests in NE Spain.
    Piqué M; Domènech R
    Sci Total Environ; 2018 Mar; 618():1539-1546. PubMed ID: 29111258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Beetles in bamboo forests: community structure in a heterogeneous landscape of southwestern Amazonia.
    Jacobs JM; von May R; Kavanaugh DH; Connor EF
    PeerJ; 2018; 6():e5153. PubMed ID: 30002980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest.
    Brando PM; Oliveria-Santos C; Rocha W; Cury R; Coe MT
    Glob Chang Biol; 2016 Jul; 22(7):2516-25. PubMed ID: 26750627
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping the natural disturbance risk to protective forests across the European Alps.
    Stritih A; Senf C; Marsoner T; Seidl R
    J Environ Manage; 2024 Aug; 366():121659. PubMed ID: 38991344
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.