These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

478 related articles for article (PubMed ID: 31797475)

  • 41. A large language model-based generative natural language processing framework fine-tuned on clinical notes accurately extracts headache frequency from electronic health records.
    Chiang CC; Luo M; Dumkrieger G; Trivedi S; Chen YC; Chao CJ; Schwedt TJ; Sarker A; Banerjee I
    Headache; 2024 Apr; 64(4):400-409. PubMed ID: 38525734
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Challenges of Developing a Natural Language Processing Method With Electronic Health Records to Identify Persons With Chronic Mobility Disability.
    Agaronnik ND; Lindvall C; El-Jawahri A; He W; Iezzoni LI
    Arch Phys Med Rehabil; 2020 Oct; 101(10):1739-1746. PubMed ID: 32446905
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Developing and validating natural language processing algorithms for radiology reports compared to ICD-10 codes for identifying venous thromboembolism in hospitalized medical patients.
    Verma AA; Masoom H; Pou-Prom C; Shin S; Guerzhoy M; Fralick M; Mamdani M; Razak F
    Thromb Res; 2022 Jan; 209():51-58. PubMed ID: 34871982
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multicenter Validation of Natural Language Processing Algorithms for the Detection of Common Data Elements in Operative Notes for Total Hip Arthroplasty: Algorithm Development and Validation.
    Han P; Fu S; Kolis J; Hughes R; Hallstrom BR; Carvour M; Maradit-Kremers H; Sohn S; Vydiswaran VGV
    JMIR Med Inform; 2022 Aug; 10(8):e38155. PubMed ID: 36044253
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Natural language processing to identify lupus nephritis phenotype in electronic health records.
    Deng Y; Pacheco JA; Ghosh A; Chung A; Mao C; Smith JC; Zhao J; Wei WQ; Barnado A; Dorn C; Weng C; Liu C; Cordon A; Yu J; Tedla Y; Kho A; Ramsey-Goldman R; Walunas T; Luo Y
    BMC Med Inform Decis Mak; 2024 Mar; 22(Suppl 2):348. PubMed ID: 38433189
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use of natural language processing in electronic medical records to identify pregnant women with suicidal behavior: towards a solution to the complex classification problem.
    Zhong QY; Mittal LP; Nathan MD; Brown KM; Knudson González D; Cai T; Finan S; Gelaye B; Avillach P; Smoller JW; Karlson EW; Cai T; Williams MA
    Eur J Epidemiol; 2019 Feb; 34(2):153-162. PubMed ID: 30535584
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ascertaining Framingham heart failure phenotype from inpatient electronic health record data using natural language processing: a multicentre Atherosclerosis Risk in Communities (ARIC) validation study.
    Moore CR; Jain S; Haas S; Yadav H; Whitsel E; Rosamand W; Heiss G; Kucharska-Newton AM
    BMJ Open; 2021 Jun; 11(6):e047356. PubMed ID: 34127492
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automated chart review utilizing natural language processing algorithm for asthma predictive index.
    Kaur H; Sohn S; Wi CI; Ryu E; Park MA; Bachman K; Kita H; Croghan I; Castro-Rodriguez JA; Voge GA; Liu H; Juhn YJ
    BMC Pulm Med; 2018 Feb; 18(1):34. PubMed ID: 29439692
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Defining a Patient Population With Cirrhosis: An Automated Algorithm With Natural Language Processing.
    Chang EK; Yu CY; Clarke R; Hackbarth A; Sanders T; Esrailian E; Hommes DW; Runyon BA
    J Clin Gastroenterol; 2016; 50(10):889-894. PubMed ID: 27348317
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Natural Language Processing for Asthma Ascertainment in Different Practice Settings.
    Wi CI; Sohn S; Ali M; Krusemark E; Ryu E; Liu H; Juhn YJ
    J Allergy Clin Immunol Pract; 2018; 6(1):126-131. PubMed ID: 28634104
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The use of natural language processing of infusion notes to identify outpatient infusions.
    Nelson SD; Lu CC; Teng CC; Leng J; Cannon GW; He T; Zeng Q; Halwani A; Sauer B
    Pharmacoepidemiol Drug Saf; 2015 Jan; 24(1):86-92. PubMed ID: 25402257
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identification of Preanesthetic History Elements by a Natural Language Processing Engine.
    Suh HS; Tully JL; Meineke MN; Waterman RS; Gabriel RA
    Anesth Analg; 2022 Dec; 135(6):1162-1171. PubMed ID: 35841317
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mining Clinical Notes for Physical Rehabilitation Exercise Information: Natural Language Processing Algorithm Development and Validation Study.
    Sivarajkumar S; Gao F; Denny P; Aldhahwani B; Visweswaran S; Bove A; Wang Y
    JMIR Med Inform; 2024 Apr; 12():e52289. PubMed ID: 38568736
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Positive predictive value of ICD-10 codes to detect anaphylaxis due to vaccination: A validation study.
    Mesfin YM; Cheng AC; Tran AHL; Buttery J
    Pharmacoepidemiol Drug Saf; 2019 Oct; 28(10):1353-1360. PubMed ID: 31441188
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Development and validation of a predictive model algorithm to identify anaphylaxis in adults with type 2 diabetes in U.S. administrative claims data.
    Beachler DC; Taylor DH; Anthony MS; Yin R; Li L; Saltus CW; Li L; Shaunik A; Walsh KE; Rothman KJ; Johannes CB; Aroda VR; Carr W; Goldberg P; Accardi A; O'Shura JS; Sharma K; Juhaeri J; Lanes S; Wu C
    Pharmacoepidemiol Drug Saf; 2021 Jul; 30(7):918-926. PubMed ID: 33899314
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Generalizability and portability of natural language processing system to extract individual social risk factors.
    Magoc T; Allen KS; McDonnell C; Russo JP; Cummins J; Vest JR; Harle CA
    Int J Med Inform; 2023 Sep; 177():105115. PubMed ID: 37302362
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of pancreatic cancer risk factors from clinical notes using natural language processing.
    Sarwal D; Wang L; Gandhi S; Sagheb Hossein Pour E; Janssens LP; Delgado AM; Doering KA; Mishra AK; Greenwood JD; Liu H; Majumder S
    Pancreatology; 2024 Jun; 24(4):572-578. PubMed ID: 38693040
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development and Validation of a Natural Language Processing Tool to Identify Injuries in Infants Associated With Abuse.
    Tiyyagura G; Asnes AG; Leventhal JM; Shapiro ED; Auerbach M; Teng W; Powers E; Thomas A; Lindberg DM; McClelland J; Kutryb C; Polzin T; Daughtridge K; Sevin V; Hsiao AL
    Acad Pediatr; 2022 Aug; 22(6):981-988. PubMed ID: 34780997
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A Transparent and Adaptable Method to Extract Colonoscopy and Pathology Data Using Natural Language Processing.
    Fevrier HB; Liu L; Herrinton LJ; Li D
    J Med Syst; 2020 Jul; 44(9):151. PubMed ID: 32737597
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Positive Predictive Values of Anaphylaxis Diagnosis in Claims Data: A Multi-Institutional Study in Taiwan.
    Chang C; Liao SC; Shao SC
    J Med Syst; 2023 Sep; 47(1):97. PubMed ID: 37695529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.