BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 31797528)

  • 1. Effectiveness of nitrogen fixation in rhizobia.
    Lindström K; Mousavi SA
    Microb Biotechnol; 2020 Sep; 13(5):1314-1335. PubMed ID: 31797528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent development and new insight of diversification and symbiosis specificity of legume rhizobia: mechanism and application.
    Chen WF; Wang ET; Ji ZJ; Zhang JJ
    J Appl Microbiol; 2021 Aug; 131(2):553-563. PubMed ID: 33300250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonnodulating Bradyrhizobium spp. Modulate the Benefits of Legume-Rhizobium Mutualism.
    Gano-Cohen KA; Stokes PJ; Blanton MA; Wendlandt CE; Hollowell AC; Regus JU; Kim D; Patel S; Pahua VJ; Sachs JL
    Appl Environ Microbiol; 2016 Sep; 82(17):5259-68. PubMed ID: 27316960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of β-rhizobia as new root nodulating bacteria in legumes and current status of the legume-rhizobium host specificity dogma.
    Hassen AI; Lamprecht SC; Bopape FL
    World J Microbiol Biotechnol; 2020 Feb; 36(3):40. PubMed ID: 32095903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forging a symbiosis: transition metal delivery in symbiotic nitrogen fixation.
    González-Guerrero M; Navarro-Gómez C; Rosa-Núñez E; Echávarri-Erasun C; Imperial J; Escudero V
    New Phytol; 2023 Sep; 239(6):2113-2125. PubMed ID: 37340839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early Molecular Dialogue Between Legumes and Rhizobia: Why Are They So Important?
    Valdés-López O; Reyero-Saavedra MDR; Isidra-Arellano MC; Sánchez-Correa MDS
    Results Probl Cell Differ; 2020; 69():409-419. PubMed ID: 33263881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by
    Speck JJ; James EK; Sugawara M; Sadowsky MJ; Gyaneshwar P
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31562172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling in Legume-Rhizobia Symbiosis.
    Shumilina J; Soboleva A; Abakumov E; Shtark OY; Zhukov VA; Frolov A
    Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What determines symbiotic nitrogen fixation efficiency in rhizobium: recent insights into Rhizobium leguminosarum.
    Li X; Li Z
    Arch Microbiol; 2023 Aug; 205(9):300. PubMed ID: 37542687
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative phosphoproteomic analyses provide evidence for extensive phosphorylation of regulatory proteins in the rhizobia-legume symbiosis.
    Zhang Z; Ke D; Hu M; Zhang C; Deng L; Li Y; Li J; Zhao H; Cheng L; Wang L; Yuan H
    Plant Mol Biol; 2019 Jun; 100(3):265-283. PubMed ID: 30989446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms underlying legume-rhizobium symbioses.
    Yang J; Lan L; Jin Y; Yu N; Wang D; Wang E
    J Integr Plant Biol; 2022 Feb; 64(2):244-267. PubMed ID: 34962095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation of heavy and transition metals aided by legume-rhizobia symbiosis.
    Hao X; Taghavi S; Xie P; Orbach MJ; Alwathnani HA; Rensing C; Wei G
    Int J Phytoremediation; 2014; 16(2):179-202. PubMed ID: 24912209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Split-root assays for studying legume-rhizobia symbioses, rhizodeposition, and belowground nitrogen transfer in legumes.
    Thilakarathna MS; Cope KR
    J Exp Bot; 2021 Jul; 72(15):5285-5299. PubMed ID: 33954584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autopolyploidy alters nodule-level interactions in the legume-rhizobium mutualism.
    Forrester NJ; Ashman TL
    Am J Bot; 2020 Feb; 107(2):179-185. PubMed ID: 31721161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. What determines the efficiency of N(2)-fixing Rhizobium-legume symbioses?
    Terpolilli JJ; Hood GA; Poole PS
    Adv Microb Physiol; 2012; 60():325-89. PubMed ID: 22633062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of the rhizobia-legume symbiosis on host root system architecture.
    Concha C; Doerner P
    J Exp Bot; 2020 Jun; 71(13):3902-3921. PubMed ID: 32337556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of legume nodulation by acidic growth conditions.
    Ferguson BJ; Lin MH; Gresshoff PM
    Plant Signal Behav; 2013 Mar; 8(3):e23426. PubMed ID: 23333963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Minimal gene set from
    Geddes BA; Kearsley JVS; Huang J; Zamani M; Muhammed Z; Sather L; Panchal AK; diCenzo GC; Finan TM
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33384333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacteroid Development, Transcriptome, and Symbiotic Nitrogen-Fixing Comparison of Bradyrhizobium arachidis in Nodules of Peanut (Arachis hypogaea) and Medicinal Legume Sophora flavescens.
    Chen WF; Meng XF; Jiao YS; Tian CF; Sui XH; Jiao J; Wang ET; Ma SJ
    Microbiol Spectr; 2023 Feb; 11(1):e0107922. PubMed ID: 36656008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NIN-Like Proteins: Interesting Players in Rhizobia-Induced Nitrate Signaling Response During Interaction with Non-Legume Host
    Hernández-Reyes C; Lichtenberg E; Keller J; Delaux PM; Ott T; Schenk ST
    Mol Plant Microbe Interact; 2022 Mar; 35(3):230-243. PubMed ID: 34813707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.