BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 31797603)

  • 1. Genome Gerrymandering: optimal division of the genome into regions with cancer type specific differences in mutation rates.
    Young A; Chmura J; Park Y; Morris Q; Atwal G
    Pac Symp Biocomput; 2020; 25():274-285. PubMed ID: 31797603
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A site specific model and analysis of the neutral somatic mutation rate in whole-genome cancer data.
    Bertl J; Guo Q; Juul M; Besenbacher S; Nielsen MM; Hornshøj H; Pedersen JS; Hobolth A
    BMC Bioinformatics; 2018 Apr; 19(1):147. PubMed ID: 29673314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of chromatin organization on variation in mutation rates in the genome.
    Makova KD; Hardison RC
    Nat Rev Genet; 2015 Apr; 16(4):213-23. PubMed ID: 25732611
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-of-origin chromatin organization shapes the mutational landscape of cancer.
    Polak P; Karlić R; Koren A; Thurman R; Sandstrom R; Lawrence M; Reynolds A; Rynes E; Vlahoviček K; Stamatoyannopoulos JA; Sunyaev SR
    Nature; 2015 Feb; 518(7539):360-364. PubMed ID: 25693567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin organization is a major influence on regional mutation rates in human cancer cells.
    Schuster-Böckler B; Lehner B
    Nature; 2012 Aug; 488(7412):504-7. PubMed ID: 22820252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scales and mechanisms of somatic mutation rate variation across the human genome.
    Supek F; Lehner B
    DNA Repair (Amst); 2019 Sep; 81():102647. PubMed ID: 31307927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequence dependencies and mutation rates of localized mutational processes in cancer.
    Poulsgaard GA; Sørensen SG; Juul RI; Nielsen MM; Pedersen JS
    Genome Med; 2023 Aug; 15(1):63. PubMed ID: 37592287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exome-Scale Discovery of Hotspot Mutation Regions in Human Cancer Using 3D Protein Structure.
    Tokheim C; Bhattacharya R; Niknafs N; Gygax DM; Kim R; Ryan M; Masica DL; Karchin R
    Cancer Res; 2016 Jul; 76(13):3719-31. PubMed ID: 27197156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NIMBus: a negative binomial regression based Integrative Method for mutation Burden Analysis.
    Zhang J; Liu J; McGillivray P; Yi C; Lochovsky L; Lee D; Gerstein M
    BMC Bioinformatics; 2020 Oct; 21(1):474. PubMed ID: 33092526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear topology modulates the mutational landscapes of cancer genomes.
    Smith KS; Liu LL; Ganesan S; Michor F; De S
    Nat Struct Mol Biol; 2017 Nov; 24(11):1000-1006. PubMed ID: 28967881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ncdDetect2: improved models of the site-specific mutation rate in cancer and driver detection with robust significance evaluation.
    Juul M; Madsen T; Guo Q; Bertl J; Hobolth A; Kellis M; Pedersen JS
    Bioinformatics; 2019 Jan; 35(2):189-199. PubMed ID: 29945188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutalisk: a web-based somatic MUTation AnaLyIS toolKit for genomic, transcriptional and epigenomic signatures.
    Lee J; Lee AJ; Lee JK; Park J; Kwon Y; Park S; Chun H; Ju YS; Hong D
    Nucleic Acids Res; 2018 Jul; 46(W1):W102-W108. PubMed ID: 29790943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local Determinants of the Mutational Landscape of the Human Genome.
    Gonzalez-Perez A; Sabarinathan R; Lopez-Bigas N
    Cell; 2019 Mar; 177(1):101-114. PubMed ID: 30901533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MutEx: a multifaceted gateway for exploring integrative pan-cancer genomic data.
    Ping J; Oyebamiji O; Yu H; Ness S; Chien J; Ye F; Kang H; Samuels D; Ivanov S; Chen D; Zhao YY; Guo Y
    Brief Bioinform; 2020 Jul; 21(4):1479-1486. PubMed ID: 31588509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genome-wide view of mutation rate co-variation using multivariate analyses.
    Ananda G; Chiaromonte F; Makova KD
    Genome Biol; 2011; 12(3):R27. PubMed ID: 21426544
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of mutated core cancer modules by integrating somatic mutation, copy number variation, and gene expression data.
    Zhang J; Zhang S; Wang Y; Zhang XS
    BMC Syst Biol; 2013; 7 Suppl 2(Suppl 2):S4. PubMed ID: 24565034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequent mutations in acetylation and ubiquitination sites suggest novel driver mechanisms of cancer.
    Narayan S; Bader GD; Reimand J
    Genome Med; 2016 May; 8(1):55. PubMed ID: 27175787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-related somatic mutations in the cancer genome.
    Milholland B; Auton A; Suh Y; Vijg J
    Oncotarget; 2015 Sep; 6(28):24627-35. PubMed ID: 26384365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DrGaP: a powerful tool for identifying driver genes and pathways in cancer sequencing studies.
    Hua X; Xu H; Yang Y; Zhu J; Liu P; Lu Y
    Am J Hum Genet; 2013 Sep; 93(3):439-51. PubMed ID: 23954162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OncoBase: a platform for decoding regulatory somatic mutations in human cancers.
    Li X; Shi L; Wang Y; Zhong J; Zhao X; Teng H; Shi X; Yang H; Ruan S; Li M; Sun ZS; Zhan Q; Mao F
    Nucleic Acids Res; 2019 Jan; 47(D1):D1044-D1055. PubMed ID: 30445567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.