BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31797615)

  • 21. Integrative analysis of survival-associated gene sets in breast cancer.
    Varn FS; Ung MH; Lou SK; Cheng C
    BMC Med Genomics; 2015 Mar; 8():11. PubMed ID: 25881247
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved nonparametric survival prediction using CoxPH, Random Survival Forest & DeepHit Neural Network.
    Asghar N; Khalil U; Ahmad B; Alshanbari HM; Hamraz M; Ahmad B; Khan DM
    BMC Med Inform Decis Mak; 2024 May; 24(1):120. PubMed ID: 38715002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a novel prognostic score combining clinicopathologic variables, gene expression, and mutation profiles for lung adenocarcinoma.
    Li G; Wang G; Guo Y; Li S; Zhang Y; Li J; Peng B
    World J Surg Oncol; 2020 Sep; 18(1):249. PubMed ID: 32950055
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel nine-microRNA-based model to improve prognosis prediction of renal cell carcinoma.
    Xu C; Zeng H; Fan J; Huang W; Yu X; Li S; Wang F; Long X
    BMC Cancer; 2022 Mar; 22(1):264. PubMed ID: 35279104
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A plea for taking all available clinical information into account when assessing the predictive value of omics data.
    Volkmann A; De Bin R; Sauerbrei W; Boulesteix AL
    BMC Med Res Methodol; 2019 Jul; 19(1):162. PubMed ID: 31340753
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Outcome prediction based on microarray analysis: a critical perspective on methods.
    Zervakis M; Blazadonakis ME; Tsiliki G; Danilatou V; Tsiknakis M; Kafetzopoulos D
    BMC Bioinformatics; 2009 Feb; 10():53. PubMed ID: 19200394
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining gene signatures improves prediction of breast cancer survival.
    Zhao X; Rødland EA; Sørlie T; Naume B; Langerød A; Frigessi A; Kristensen VN; Børresen-Dale AL; Lingjærde OC
    PLoS One; 2011 Mar; 6(3):e17845. PubMed ID: 21423775
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-dimensional Cox models: the choice of penalty as part of the model building process.
    Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U
    Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integration of multiple types of genetic markers for neuroblastoma may contribute to improved prediction of the overall survival.
    Polewko-Klim A; Lesiński W; Mnich K; Piliszek R; Rudnicki WR
    Biol Direct; 2018 Sep; 13(1):17. PubMed ID: 30236139
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model.
    Matsuo K; Purushotham S; Jiang B; Mandelbaum RS; Takiuchi T; Liu Y; Roman LD
    Am J Obstet Gynecol; 2019 Apr; 220(4):381.e1-381.e14. PubMed ID: 30582927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development and Validation of an Individualized Immune Prognostic Signature for Recurrent Prostate Cancer.
    Jin Y; Wang L; Lou H; Song C; He X; Ding M
    Comb Chem High Throughput Screen; 2021; 24(1):98-108. PubMed ID: 32593277
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Survival prediction models: an introduction to discrete-time modeling.
    Suresh K; Severn C; Ghosh D
    BMC Med Res Methodol; 2022 Jul; 22(1):207. PubMed ID: 35883032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cost-effective survival prediction for patients with advanced prostate cancer using clinical trial and real-world hospital registry datasets.
    Murtojärvi M; Halkola AS; Airola A; Laajala TD; Mirtti T; Aittokallio T; Pahikkala T
    Int J Med Inform; 2020 Jan; 133():104014. PubMed ID: 31783311
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Integrated genomic analysis for prediction of survival for patients with liver cancer using The Cancer Genome Atlas.
    Song YZ; Li X; Li W; Wang Z; Li K; Xie FL; Zhang F
    World J Gastroenterol; 2018 Jul; 24(28):3145-3154. PubMed ID: 30065560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison of pathway and gene-level models for cancer prognosis prediction.
    Zheng X; Amos CI; Frost HR
    BMC Bioinformatics; 2020 Feb; 21(1):76. PubMed ID: 32111152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Feature selection and survival modeling in The Cancer Genome Atlas.
    Kim H; Bredel M
    Int J Nanomedicine; 2013; 8 Suppl 1(Suppl 1):57-62. PubMed ID: 24098079
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combining multidimensional genomic measurements for predicting cancer prognosis: observations from TCGA.
    Zhao Q; Shi X; Xie Y; Huang J; Shia B; Ma S
    Brief Bioinform; 2015 Mar; 16(2):291-303. PubMed ID: 24632304
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.