These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31797622)

  • 61. Discovery and Annotation of Plant Endogenous Target Mimicry Sequences from Public Transcriptome Libraries: A Case Study of Prunus persica.
    Karakülah G
    J Integr Bioinform; 2017 Jun; 14(4):. PubMed ID: 28672765
    [TBL] [Abstract][Full Text] [Related]  

  • 62. PLIT: An alignment-free computational tool for identification of long non-coding RNAs in plant transcriptomic datasets.
    Deshpande S; Shuttleworth J; Yang J; Taramonli S; England M
    Comput Biol Med; 2019 Feb; 105():169-181. PubMed ID: 30665012
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Transcriptomic analysis of high-throughput sequencing about circRNA, lncRNA and mRNA in bladder cancer.
    Li M; Liu Y; Zhang X; Liu J; Wang P
    Gene; 2018 Nov; 677():189-197. PubMed ID: 30025927
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A deep learning method for lincRNA detection using auto-encoder algorithm.
    Yu N; Yu Z; Pan Y
    BMC Bioinformatics; 2017 Dec; 18(Suppl 15):511. PubMed ID: 29244011
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Signature microRNAs and long noncoding RNAs in laryngeal cancer recurrence identified using a competing endogenous RNA network.
    Tang Z; Wei G; Zhang L; Xu Z
    Mol Med Rep; 2019 Jun; 19(6):4806-4818. PubMed ID: 31059106
    [TBL] [Abstract][Full Text] [Related]  

  • 66. DeepciRGO: functional prediction of circular RNAs through hierarchical deep neural networks using heterogeneous network features.
    Deng L; Lin W; Wang J; Zhang J
    BMC Bioinformatics; 2020 Nov; 21(1):519. PubMed ID: 33183227
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Identification of functional lncRNAs based on competing endogenous RNA network in osteoblast differentiation.
    Hong S; Hu S; Kang Z; Liu Z; Yang W; Zhang Y; Yang D; Ruan W; Yu G; Sun L; Chen L
    J Cell Physiol; 2020 Mar; 235(3):2232-2244. PubMed ID: 31486078
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Gene Ontology-based function prediction of long non-coding RNAs using bi-random walk.
    Zhang J; Zou S; Deng L
    BMC Med Genomics; 2018 Nov; 11(Suppl 5):99. PubMed ID: 30453964
    [TBL] [Abstract][Full Text] [Related]  

  • 69. CRlncRC: a machine learning-based method for cancer-related long noncoding RNA identification using integrated features.
    Zhang X; Wang J; Li J; Chen W; Liu C
    BMC Med Genomics; 2018 Dec; 11(Suppl 6):120. PubMed ID: 30598114
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A Support Vector Machine based method to distinguish long non-coding RNAs from protein coding transcripts.
    Schneider HW; Raiol T; Brigido MM; Walter MEMT; Stadler PF
    BMC Genomics; 2017 Oct; 18(1):804. PubMed ID: 29047334
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Differential expression patterns of specific long noncoding RNAs and competing endogenous RNA network in alopecia areata.
    Sheng Y; Ma J; Zhao J; Qi S; Hu R; Yang Q
    J Cell Biochem; 2019 Jun; 120(6):10737-10747. PubMed ID: 30790320
    [TBL] [Abstract][Full Text] [Related]  

  • 72. LncRNA and mRNA integration network reconstruction reveals novel key regulators in esophageal squamous-cell carcinoma.
    Alaei S; Sadeghi B; Najafi A; Masoudi-Nejad A
    Genomics; 2019 Jan; 111(1):76-89. PubMed ID: 29317304
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Learning distributed representations of RNA and protein sequences and its application for predicting lncRNA-protein interactions.
    Yi HC; You ZH; Cheng L; Zhou X; Jiang TH; Li X; Wang YB
    Comput Struct Biotechnol J; 2020; 18():20-26. PubMed ID: 31890140
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Inferring Interaction Networks From Multi-Omics Data.
    Hawe JS; Theis FJ; Heinig M
    Front Genet; 2019; 10():535. PubMed ID: 31249591
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Adverse Drug Reaction Predictions Using Stacking Deep Heterogeneous Information Network Embedding Approach.
    Hu B; Wang H; Wang L; Yuan W
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30518099
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A transcriptomic profile of topping responsive non-coding RNAs in tobacco roots (Nicotiana tabacum).
    Chen X; Sun S; Liu F; Shen E; Liu L; Ye C; Xiao B; Timko MP; Zhu QH; Fan L; Cao P
    BMC Genomics; 2019 Nov; 20(1):856. PubMed ID: 31726968
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Interpretable Deep Learning Model Reveals Subsequences of Various Functions for Long Non-Coding RNA Identification.
    Lin R; Wichadakul D
    Front Genet; 2022; 13():876721. PubMed ID: 35685437
    [TBL] [Abstract][Full Text] [Related]  

  • 78. BRANEnet: embedding multilayer networks for omics data integration.
    Jagtap S; Pirayre A; Bidard F; Duval L; Malliaros FD
    BMC Bioinformatics; 2022 Oct; 23(1):429. PubMed ID: 36245002
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Artificial intelligence methods enhance the discovery of RNA interactions.
    Pepe G; Appierdo R; Carrino C; Ballesio F; Helmer-Citterich M; Gherardini PF
    Front Mol Biosci; 2022; 9():1000205. PubMed ID: 36275611
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Machine learning approaches for predicting biomolecule-disease associations.
    Ding Y; Lei X; Liao B; Wu FX
    Brief Funct Genomics; 2021 Jul; 20(4):273-287. PubMed ID: 33554238
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.