These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31797647)

  • 1. Determination of optical properties of human tissues obtained from parotidectomy in the spectral range of 250 to 800 nm.
    Wisotzky EL; Uecker FC; Dommerich S; Hilsmann A; Eisert P; Arens P
    J Biomed Opt; 2019 Dec; 24(12):1-7. PubMed ID: 31797647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. OpenSFDI: an open-source guide for constructing a spatial frequency domain imaging system.
    Applegate M; Karrobi K; Angelo J; Austin W; Tabassum S; Aguénounon E; Tilbury K; Saager R; Gioux S; Roblyer D
    J Biomed Opt; 2020 Jan; 25(1):1-13. PubMed ID: 31925946
    [No Abstract]   [Full Text] [Related]  

  • 3. Measurement of absorption and reduced scattering coefficients in Asian human epidermis, dermis, and subcutaneous fat tissues in the 400- to 1100-nm wavelength range for optical penetration depth and energy deposition analysis.
    Shimojo Y; Nishimura T; Hazama H; Ozawa T; Awazu K
    J Biomed Opt; 2020 Apr; 25(4):1-14. PubMed ID: 32356424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the optical properties of cholesteatoma in the spectral range of 250 to 800 nm.
    Wisotzky EL; Arens P; Dommerich S; Hilsmann A; Eisert P; Uecker FC
    Biomed Opt Express; 2020 Mar; 11(3):1489-1500. PubMed ID: 32206424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of shear rate on the optical properties of human blood in the spectral range 250 to 1100 nm.
    Friebel M; Helfmann J; Müller G; Meinke M
    J Biomed Opt; 2007; 12(5):054005. PubMed ID: 17994893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of absorption and scattering characteristics of kiwifruit tissue using a single integrating sphere system.
    Fang ZH; Fu XP; He XM
    J Zhejiang Univ Sci B; 2016 Jun; 17(6):484-92. PubMed ID: 27256682
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of relative error in perturbation Monte Carlo simulations of radiative transport.
    Parsanasab M; Hayakawa C; Spanier J; Shen Y; Venugopalan V
    J Biomed Opt; 2023 Jun; 28(6):065001. PubMed ID: 37293394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise determination of the optical properties of turbid media using an optimized integrating sphere and advanced Monte Carlo simulations. Part 2: experiments.
    Bergmann F; Foschum F; Zuber R; Kienle A
    Appl Opt; 2020 Apr; 59(10):3216-3226. PubMed ID: 32400606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sampling depth of a diffuse reflectance spectroscopy probe for in-vivo physiological quantification of murine subcutaneous tumor allografts.
    Greening G; Mundo A; Rajaram N; Muldoon TJ
    J Biomed Opt; 2018 Aug; 23(8):1-14. PubMed ID: 30152204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical signature of nerve tissue-Exploratory ex vivo study comparing optical, histological, and molecular characteristics of different adipose and nerve tissues.
    Balthasar AJR; Bydlon TM; Ippel H; van der Voort M; Hendriks BHW; Lucassen GW; van Geffen GJ; van Kleef M; van Dijk P; Lataster A
    Lasers Surg Med; 2018 Sep; 50(9):948-960. PubMed ID: 29756651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polydimethylsiloxane tissue-mimicking phantoms with tunable optical properties.
    Goldfain AM; Lemaillet P; Allen DW; Briggman KA; Hwang J
    J Biomed Opt; 2021 Nov; 27(7):. PubMed ID: 34796707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sonohistology for the computerized differentiation of parotid gland tumors.
    Scheipers U; Siebers S; Gottwald F; Ashfaq M; Bozzato A; Zenk J; Iro H; Ermert H
    Ultrasound Med Biol; 2005 Oct; 31(10):1287-96. PubMed ID: 16223631
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical properties of adenocarcinoma and squamous cell carcinoma of the gastroesophageal junction.
    Holmer C; Lehmann KS; Wanken J; Reissfelder C; Roggan A; Mueller G; Buhr HJ; Ritz JP
    J Biomed Opt; 2007; 12(1):014025. PubMed ID: 17343500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Spectral characteristics of normal breast samples in the 350-850 nm wavelength range].
    Wang YH; Yang HQ; Xie SS; Ye Z; Su YM
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2751-5. PubMed ID: 20038053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions.
    Friebel M; Roggan A; Müller G; Meinke M
    J Biomed Opt; 2006; 11(3):34021. PubMed ID: 16822070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of optical properties of dissected and homogenized biological tissue.
    Eisel M; Ströbl S; Pongratz T; Stepp H; Rühm A; Sroka R
    J Biomed Opt; 2018 Sep; 23(9):1-9. PubMed ID: 30251487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diffuse reflectance spectroscopy, a potential optical sensing technology for the detection of cortical breaches during spinal screw placement.
    Swamy A; Burström G; Spliethoff JW; Babic D; Reich C; Groen J; Edström E; Elmi Terander A; Racadio JM; Dankelman J; Hendriks BHW
    J Biomed Opt; 2019 Jan; 24(1):1-11. PubMed ID: 30701722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ estimation of optical properties of rat and monkey brains using femtosecond time-resolved measurements.
    Hoshi Y; Tanikawa Y; Okada E; Kawaguchi H; Nemoto M; Shimizu K; Kodama T; Watanabe M
    Sci Rep; 2019 Jun; 9(1):9165. PubMed ID: 31235830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing a use-error robust machine learning model for quantitative analysis of diffuse reflectance spectra.
    Scarbrough A; Chen K; Yu B
    J Biomed Opt; 2024 Jan; 29(1):015001. PubMed ID: 38213471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.