BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31797727)

  • 1. Biomechanical assessment of the stability of osteochondral grafts implanted in porcine and bovine femoral condyles.
    Bowland P; Cowie RM; Ingham E; Fisher J; Jennings LM
    Proc Inst Mech Eng H; 2020 Feb; 234(2):163-170. PubMed ID: 31797727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary stability of press-fit-implanted osteochondral grafts. Influence of graft size, repeated insertion, and harvesting technique.
    Duchow J; Hess T; Kohn D
    Am J Sports Med; 2000; 28(1):24-7. PubMed ID: 10653539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Short-term load bearing capacity of osteochondral autografts implanted by the mosaicplasty technique: an in vitro porcine model.
    Whiteside RA; Bryant JT; Jakob RP; Mainil-Varlet P; Wyss UP
    J Biomech; 2003 Aug; 36(8):1203-8. PubMed ID: 12831747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of drill-hole length on the primary stability of osteochondral grafts in mosaicplasty.
    Kordás G; Szabó JS; Hangody L
    Orthopedics; 2005 Apr; 28(4):401-4. PubMed ID: 15887587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primary stability of osteochondral grafts used in mosaicplasty.
    Kordás G; Szabó JS; Hangody L
    Arthroscopy; 2006 Apr; 22(4):414-21. PubMed ID: 16581454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of robust finite element models to investigate the stability of osteochondral grafts within porcine femoral condyles.
    Day GA; Cooper RJ; Jones AC; Mengoni M; Wilcox RK
    J Mech Behav Biomed Mater; 2022 Oct; 134():105411. PubMed ID: 36037705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axial load-bearing capacity of an osteochondral autograft stabilized with a resorbable osteoconductive bone cement compared with a press-fit graft in a bovine model.
    Kiss MO; Levasseur A; Petit Y; Lavigne P
    Am J Sports Med; 2012 May; 40(5):1046-52. PubMed ID: 22415207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple geometry tribological study of osteochondral graft implantation in the knee.
    Bowland P; Ingham E; Fisher J; Jennings LM
    Proc Inst Mech Eng H; 2018 Mar; 232(3):249-256. PubMed ID: 29375001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CaAlg hydrogel containing bone morphogenetic protein 4-enhanced adipose-derived stem cells combined with osteochondral mosaicplasty facilitated the repair of large osteochondral defects.
    Chen L; Shi Y; Zhang X; Hu X; Shao Z; Dai L; Ju X; Ao Y; Wang J
    Knee Surg Sports Traumatol Arthrosc; 2019 Nov; 27(11):3668-3678. PubMed ID: 30923857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteochondral Allograft Transplantation of the Femoral Condyle Utilizing a Thin Plug Graft Technique.
    Tírico LEP; McCauley JC; Pulido PA; Bugbee WD
    Am J Sports Med; 2019 Jun; 47(7):1613-1620. PubMed ID: 31100008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of basal support and early loading on bone cartilage healing in press-fitted osteochondral autografts.
    Nosewicz TL; Reilingh ML; Wolny M; van Dijk CN; Duda GN; Schell H
    Knee Surg Sports Traumatol Arthrosc; 2014 Jun; 22(6):1445-51. PubMed ID: 23479055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical properties of articular cartilage in different regions and sites of the knee joint: acquisition of osteochondral allografts.
    Ma Y; Lin Q; Wang X; Liu Y; Yu X; Ren Z; Zhang Y; Guo L; Wu X; Zhang X; Li P; Duan W; Wei X
    Cell Tissue Bank; 2024 Jun; 25(2):633-648. PubMed ID: 38319426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact insertion of osteochondral grafts: Interference fit and central graft reduction affect biomechanics and cartilage damage.
    Su AW; Chen Y; Wailes DH; Wong VW; Cai S; Chen AC; Bugbee WD; Sah RL
    J Orthop Res; 2018 Jan; 36(1):377-386. PubMed ID: 28682003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bone block augmentation from the iliac crest for treatment of deep osteochondral defects of the knee resembles biomechanical properties of the subchondral bone.
    Grechenig S; Worlicek M; Penzkofer R; Zeman F; Kujat R; Heiss P; Pattappa G; Zellner J; Angele P
    Knee Surg Sports Traumatol Arthrosc; 2019 Aug; 27(8):2488-2493. PubMed ID: 30370438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An experimental simulation model to assess wear of the porcine patellofemoral joint.
    Cowie RM; Bowland P; Baji D; Fermor HL; Ingham E; Fisher J; Jennings LM
    PLoS One; 2021; 16(4):e0250077. PubMed ID: 33901210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact loading of articular cartilage during transplantation of osteochondral autograft.
    Whiteside RA; Jakob RP; Wyss UP; Mainil-Varlet P
    J Bone Joint Surg Br; 2005 Sep; 87(9):1285-91. PubMed ID: 16129760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteochondral autograft transplantation in the porcine knee.
    Harman BD; Weeden SH; Lichota DK; Brindley GW
    Am J Sports Med; 2006 Jun; 34(6):913-8. PubMed ID: 16710049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a preclinical natural porcine knee simulation model for the tribological assessment of osteochondral grafts in vitro.
    Bowland P; Ingham E; Fisher J; Jennings LM
    J Biomech; 2018 Aug; 77():91-98. PubMed ID: 30049448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteochondral transplantation for the treatment of osteochondral defects at the talus with the Diamond twin system(®) and graft harvesting from the posterior femoral condyles.
    Petersen W; Taheri P; Schliemann B; Achtnich A; Winter C; Forkel P
    Arch Orthop Trauma Surg; 2014 Jun; 134(6):843-52. PubMed ID: 24744009
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chondral repair of the knee joint using mosaicplasty.
    Robert H
    Orthop Traumatol Surg Res; 2011 Jun; 97(4):418-29. PubMed ID: 21602114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.