These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31797936)

  • 1. Dynamic and tunable metabolite control for robust minimal-equipment assessment of serum zinc.
    McNerney MP; Michel CL; Kishore K; Standeven J; Styczynski MP
    Nat Commun; 2019 Dec; 10(1):5514. PubMed ID: 31797936
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Pigment-Based Whole-Cell Zinc Biosensor for Human Serum.
    Watstein DM; Styczynski MP
    ACS Synth Biol; 2018 Jan; 7(1):267-275. PubMed ID: 29202581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Active Analyte Import Improves the Dynamic Range and Sensitivity of a Vitamin B
    McNerney MP; Piorino F; Michel CL; Styczynski MP
    ACS Synth Biol; 2020 Feb; 9(2):402-411. PubMed ID: 31977200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetically encoded ratiometric biosensors to measure intracellular exchangeable zinc in Escherichia coli.
    Wang D; Hurst TK; Thompson RB; Fierke CA
    J Biomed Opt; 2011 Aug; 16(8):087011. PubMed ID: 21895338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of novel metabolite-responsive transcription factors via transposon-mediated protein fusion.
    Younger AKD; Su PY; Shepard AJ; Udani SV; Cybulski TR; Tyo KEJ; Leonard JN
    Protein Eng Des Sel; 2018 Feb; 31(2):55-63. PubMed ID: 29385546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precise control of lycopene production to enable a fast-responding, minimal-equipment biosensor.
    McNerney MP; Styczynski MP
    Metab Eng; 2017 Sep; 43(Pt A):46-53. PubMed ID: 28826810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Modular Biosensors to Confer Metabolite-Responsive Regulation of Transcription.
    Younger AK; Dalvie NC; Rottinghaus AG; Leonard JN
    ACS Synth Biol; 2017 Feb; 6(2):311-325. PubMed ID: 27744683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells.
    Mohsin M; Ahmad A
    Biosens Bioelectron; 2014 Sep; 59():358-64. PubMed ID: 24752146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering tunable biosensors for monitoring putrescine in Escherichia coli.
    Chen XF; Xia XX; Lee SY; Qian ZG
    Biotechnol Bioeng; 2018 Apr; 115(4):1014-1027. PubMed ID: 29251347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Optimization of a Cell-Free Atrazine Biosensor.
    Silverman AD; Akova U; Alam KK; Jewett MC; Lucks JB
    ACS Synth Biol; 2020 Mar; 9(3):671-677. PubMed ID: 32078765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and Sensing of Butyrate in a Probiotic
    Bai Y; Mansell TJ
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32443851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of N-acetylneuraminic acid responsive biosensors based on the transcriptional regulator NanR.
    Peters G; De Paepe B; De Wannemaeker L; Duchi D; Maertens J; Lammertyn J; De Mey M
    Biotechnol Bioeng; 2018 Jul; 115(7):1855-1865. PubMed ID: 29532902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring bacterial growth by tapered fiber and changes in evanescent field.
    Maraldo D; Shankar PM; Mutharasan R
    Biosens Bioelectron; 2006 Jan; 21(7):1339-44. PubMed ID: 15913977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise metabolic engineering of carotenoid biosynthesis in Escherichia coli towards a low-cost biosensor.
    Watstein DM; McNerney MP; Styczynski MP
    Metab Eng; 2015 Sep; 31():171-80. PubMed ID: 26141149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of 2,4,6-Trinitrotoluene Biosensors with Novel Sensing Elements from Escherichia coli K-12 MG1655.
    Tan J; Kan N; Wang W; Ling J; Qu G; Jin J; Shao Y; Liu G; Chen H
    Cell Biochem Biophys; 2015 Jun; 72(2):417-28. PubMed ID: 25561288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of fluorescently tagged SSB proteins in in vivo localization experiments.
    Reyes-Lamothe R
    Methods Mol Biol; 2012; 922():245-53. PubMed ID: 22976192
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying Acute Fuel and Respiration Dependent pH Homeostasis in Live Cells Using the mCherryTYG Mutant as a Fluorescence Lifetime Sensor.
    Haynes EP; Rajendran M; Henning CK; Mishra A; Lyon AM; Tantama M
    Anal Chem; 2019 Jul; 91(13):8466-8475. PubMed ID: 31247720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Designing, construction and characterization of genetically encoded FRET-based nanosensor for real time monitoring of lysine flux in living cells.
    Ameen S; Ahmad M; Mohsin M; Qureshi MI; Ibrahim MM; Abdin MZ; Ahmad A
    J Nanobiotechnology; 2016 Jun; 14(1):49. PubMed ID: 27334743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Standoff detection of explosives and buried landmines using fluorescent bacterial sensor cells.
    Kabessa Y; Eyal O; Bar-On O; Korouma V; Yagur-Kroll S; Belkin S; Agranat AJ
    Biosens Bioelectron; 2016 May; 79():784-8. PubMed ID: 26774094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening for transmembrane association in divisome proteins using TOXGREEN, a high-throughput variant of the TOXCAT assay.
    Armstrong CR; Senes A
    Biochim Biophys Acta; 2016 Nov; 1858(11):2573-2583. PubMed ID: 27453198
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.