These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 31797990)

  • 1. A novel application of hematite precipitation for high effective separation of Fe from Nd-Fe-B scrap.
    Lin X; Qu Z; Chen Y; Jin R; Su T; Yu Y; Zhu S; Huo M; Peng J; Wang Z
    Sci Rep; 2019 Dec; 9(1):18362. PubMed ID: 31797990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An innovative environmental process for the treatment of scrap Nd-Fe-B magnets.
    Kumari A; Jha MK; Pathak DD
    J Environ Manage; 2020 Nov; 273():111063. PubMed ID: 32861149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and recovery of rare-earth permanent magnets from waste electrical and electronic equipment.
    Lixandru A; Venkatesan P; Jönsson C; Poenaru I; Hall B; Yang Y; Walton A; Güth K; Gauß R; Gutfleisch O
    Waste Manag; 2017 Oct; 68():482-489. PubMed ID: 28751173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of rare earths from spent NdFeB magnets of wind turbine: Leaching and kinetic aspects.
    Kumari A; Sinha MK; Pramanik S; Sahu SK
    Waste Manag; 2018 May; 75():486-498. PubMed ID: 29397277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Value analysis of neodymium content in shredder feed: toward enabling the feasibility of rare earth magnet recycling.
    Bandara HM; Darcy JW; Apelian D; Emmert MH
    Environ Sci Technol; 2014 Jun; 48(12):6553-60. PubMed ID: 24934194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective recycling of Co and Sr from Co/Sr-bearing wastewater via an integrated Fe coagulation and hematite precipitation approach.
    Su T; Han Z; Qu Z; Chen Y; Lin X; Zhu S; Bian R; Xie X
    Environ Res; 2020 Aug; 187():109654. PubMed ID: 32445948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of High-Purity Strontianite and Hematite from Strontium-Bearing Sludge.
    Bian R; Su T; Chen Y; Qu Z; Zhu S; Tian X; Huo Y
    ACS Omega; 2020 Jun; 5(23):14078-14085. PubMed ID: 32566874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmentally Friendly Approach for Nd
    Khoshsima S; Vidmar J; Samardžija Z; Tomše T; Kušter M; Mishra A; Šturm S; Žužek K
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-purity recycling of hematite and Zn/Cu mixture from waste smelting slag.
    Huo Y; Song X; Zhu S; Chen Y; Lin X; Wu Y; Qu Z; Su T; Xie X
    Sci Rep; 2020 Jun; 10(1):9031. PubMed ID: 32494002
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stepwise extraction of Fe, Al, Ca, and Zn: A green route to recycle raw electroplating sludge.
    Qu Z; Su T; Zhu S; Chen Y; Yu Y; Xie X; Yang J; Huo M; Bian D
    J Environ Manage; 2021 Dec; 300():113700. PubMed ID: 34517231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Extraction of Rare Earth Elements from Permanent Magnet Scraps with Membrane Solvent Extraction.
    Kim D; Powell LE; Delmau LH; Peterson ES; Herchenroeder J; Bhave RR
    Environ Sci Technol; 2015 Aug; 49(16):9452-9. PubMed ID: 26107531
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-Loop Recycling of Nd-Fe-B Permanent Magnets: A Sustainable Solution for the RE
    Mishra A; Khoshsima S; Tomše T; Podmiljšak B; Šturm S; Burkhardt C; Žužek K
    Materials (Basel); 2023 Oct; 16(19):. PubMed ID: 37834702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resource Recycling of Mn-Rich Sludge: Effective Separation of Impure Fe/Al and Recovery of High-Purity Hausmannite.
    Liu C; Han Q; Chen Y; Zhu S; Su T; Qu Z; Gao Y; Li T; Huo Y; Huo M
    ACS Omega; 2021 Mar; 6(11):7351-7359. PubMed ID: 33778248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blending Powder Process for Recycling Sintered Nd-Fe-B Magnets.
    Prokofev PA; Kolchugina NB; Skotnicova K; Burkhanov GS; Kursa M; Zheleznyi MV; Dormidontov NA; Cegan T; Bakulina AS; Koshkidko YS; Smetana B
    Materials (Basel); 2020 Jul; 13(14):. PubMed ID: 32650445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparisons of Dy Utilization Efficiency by DyH
    Guo S; Liao S; Fan X; Ding G; Zheng B; Chen R; Yan A
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of hard magnetic NdFeB composite particles by recycling the waste using microwave assisted auto-combustion and reduction method.
    Zhou X; Tian YL; Yu HY; Zhang H; Zhong XC; Liu ZW
    Waste Manag; 2019 Mar; 87():645-651. PubMed ID: 31109566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon.
    Rollat A; Guyonnet D; Planchon M; Tuduri J
    Waste Manag; 2016 Mar; 49():427-436. PubMed ID: 26818182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Operationally Simple Method for Separating the Rare-Earth Elements Neodymium and Dysprosium.
    Bogart JA; Lippincott CA; Carroll PJ; Schelter EJ
    Angew Chem Int Ed Engl; 2015 Jul; 54(28):8222-5. PubMed ID: 26014901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of inorganic anions on hydrothermal removal of impurities Fe/Al from Cu-bearing polymetallic leachate.
    Su T; Kong F; Chen Y; Liu J; Bian R; Zhu S
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):10635-10647. PubMed ID: 38198093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncovering the global life cycles of the rare earth elements.
    Du X; Graedel TE
    Sci Rep; 2011; 1():145. PubMed ID: 22355662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.