BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31798004)

  • 1. Short-term effects of sound localization training in virtual reality.
    Steadman MA; Kim C; Lestang JH; Goodman DFM; Picinali L
    Sci Rep; 2019 Dec; 9(1):18284. PubMed ID: 31798004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Usability of Individualized Head-Related Transfer Functions in Virtual Reality: Empirical Study With Perceptual Attributes in Sagittal Plane Sound Localization.
    Jenny C; Reuter C
    JMIR Serious Games; 2020 Sep; 8(3):e17576. PubMed ID: 32897232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generic HRTFs May be Good Enough in Virtual Reality. Improving Source Localization through Cross-Modal Plasticity.
    Berger CC; Gonzalez-Franco M; Tajadura-Jiménez A; Florencio D; Zhang Z
    Front Neurosci; 2018; 12():21. PubMed ID: 29456486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perceptual factors contribute more than acoustical factors to sound localization abilities with virtual sources.
    Andéol G; Savel S; Guillaume A
    Front Neurosci; 2014; 8():451. PubMed ID: 25688182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improvements of sound localization abilities by the facial ruff of the barn owl (Tyto alba) as demonstrated by virtual ruff removal.
    Hausmann L; von Campenhausen M; Endler F; Singheiser M; Wagner H
    PLoS One; 2009 Nov; 4(11):e7721. PubMed ID: 19890389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do you hear where I hear?: isolating the individualized sound localization cues.
    Romigh GD; Simpson BD
    Front Neurosci; 2014; 8():370. PubMed ID: 25520607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound source localization with varying amount of visual information in virtual reality.
    Ahrens A; Lund KD; Marschall M; Dau T
    PLoS One; 2019; 14(3):e0214603. PubMed ID: 30925174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid head-related transfer function adaptation using a virtual auditory environment.
    Parseihian G; Katz BF
    J Acoust Soc Am; 2012 Apr; 131(4):2948-57. PubMed ID: 22501072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sound localization in individualized and non-individualized crosstalk cancellation systems.
    Majdak P; Masiero B; Fels J
    J Acoust Soc Am; 2013 Apr; 133(4):2055-68. PubMed ID: 23556576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reaching to sounds in virtual reality: A multisensory-motor approach to promote adaptation to altered auditory cues.
    Valzolgher C; Verdelet G; Salemme R; Lombardi L; Gaveau V; Farné A; Pavani F
    Neuropsychologia; 2020 Dec; 149():107665. PubMed ID: 33130161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perceptual recalibration in human sound localization: learning to remediate front-back reversals.
    Zahorik P; Bangayan P; Sundareswaran V; Wang K; Tam C
    J Acoust Soc Am; 2006 Jul; 120(1):343-59. PubMed ID: 16875231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Analysis of HRTFs Measurement Using In-Ear Microphones.
    Bruschi V; Terenzi A; Dourou NA; Spinsante S; Cecchi S
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of spectral modulation cues in virtual sound localization.
    Qian J; Eddins DA
    J Acoust Soc Am; 2008 Jan; 123(1):302-14. PubMed ID: 18177160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of head-related transfer function measurement methodology on localization performance in spatial audio interfaces.
    MacDonald JA; Tran PK
    Hum Factors; 2008 Apr; 50(2):256-63. PubMed ID: 18516836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of spectral detail in sound-source localization.
    Kulkarni A; Colburn HS
    Nature; 1998 Dec 24-31; 396(6713):747-9. PubMed ID: 9874370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct comparison of the impact of head tracking, reverberation, and individualized head-related transfer functions on the spatial perception of a virtual speech source.
    Begault DR; Wenzel EM; Anderson MR
    J Audio Eng Soc; 2001 Oct; 49(10):904-16. PubMed ID: 11885605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low cost, non-individualized surround sound system based upon head related transfer functions: an ergonomics study and prototype development.
    So RH; Leung NM; Braasch J; Leung KL
    Appl Ergon; 2006 Nov; 37(6):695-707. PubMed ID: 16524558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adapting to altered auditory cues: Generalization from manual reaching to head pointing.
    Valzolgher C; Todeschini M; Verdelet G; Gatel J; Salemme R; Gaveau V; Truy E; Farnè A; Pavani F
    PLoS One; 2022; 17(4):e0263509. PubMed ID: 35421095
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Auditory Accommodation to Poorly Matched Non-Individual Spectral Localization Cues Through Active Learning.
    Stitt P; Picinali L; Katz BFG
    Sci Rep; 2019 Jan; 9(1):1063. PubMed ID: 30705332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benefits of active listening during 3D sound localization.
    Gaveau V; Coudert A; Salemme R; Koun E; Desoche C; Truy E; Farnè A; Pavani F
    Exp Brain Res; 2022 Nov; 240(11):2817-2833. PubMed ID: 36071210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.