These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 31798017)
1. Physiological parameters analysis of transfemoral amputees with different prosthetic knees. Li S; Cao W; Yu H; Meng Q; Chen W Acta Bioeng Biomech; 2019; 21(3):135-142. PubMed ID: 31798017 [TBL] [Abstract][Full Text] [Related]
2. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial. Cao W; Yu H; Zhao W; Meng Q; Chen W Technol Health Care; 2018; 26(4):581-592. PubMed ID: 29710741 [TBL] [Abstract][Full Text] [Related]
3. Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg and Mauch SNS prosthetic knees. Segal AD; Orendurff MS; Klute GK; McDowell ML; Pecoraro JA; Shofer J; Czerniecki JM J Rehabil Res Dev; 2006; 43(7):857-70. PubMed ID: 17436172 [TBL] [Abstract][Full Text] [Related]
4. Enhancement of a prosthetic knee with a microprocessor-controlled gait phase switch reduces falls and improves balance confidence and gait speed in community ambulators with unilateral transfemoral amputation. Fuenzalida Squella SA; Kannenberg A; Brandão Benetti  Prosthet Orthot Int; 2018 Apr; 42(2):228-235. PubMed ID: 28691574 [TBL] [Abstract][Full Text] [Related]
5. Gait efficiency using the C-Leg. Orendurff MS; Segal AD; Klute GK; McDowell ML; Pecoraro JA; Czerniecki JM J Rehabil Res Dev; 2006; 43(2):239-46. PubMed ID: 16847790 [TBL] [Abstract][Full Text] [Related]
6. Assessment of transfemoral amputees using a passive microprocessor-controlled knee versus an active powered microprocessor-controlled knee for level walking. Creylman V; Knippels I; Janssen P; Biesbrouck E; Lechler K; Peeraer L Biomed Eng Online; 2016 Dec; 15(Suppl 3):142. PubMed ID: 28105945 [TBL] [Abstract][Full Text] [Related]
7. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system. Abdulhasan ZM; Scally AJ; Buckley JG Clin Biomech (Bristol); 2018 Aug; 57():35-41. PubMed ID: 29908391 [TBL] [Abstract][Full Text] [Related]
8. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation. Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259 [TBL] [Abstract][Full Text] [Related]
9. The influence of a user-adaptive prosthetic knee across varying walking speeds: A randomized cross-over trial. Prinsen EC; Nederhand MJ; Sveinsdóttir HS; Prins MR; van der Meer F; Koopman HFJM; Rietman JS Gait Posture; 2017 Jan; 51():254-260. PubMed ID: 27838569 [TBL] [Abstract][Full Text] [Related]
10. Foot trajectories and loading rates in a transfemoral amputee for six different commercial prosthetic knees: An indication of adaptability. Abouhossein A; Awad MI; Maqbool HF; Crisp C; Stewart TD; Messenger N; Richardson RC; Dehghani-Sanij AA; Bradley D Med Eng Phys; 2019 Jun; 68():46-56. PubMed ID: 30979583 [TBL] [Abstract][Full Text] [Related]
11. Pilot study of the microprocessor-controlled prosthetic knee with a novel hydraulic damper. Zhang Y; Cao W; Yu H; Meng Q; Chen W Technol Health Care; 2020; 28(1):93-97. PubMed ID: 31476188 [TBL] [Abstract][Full Text] [Related]
12. Energy expenditure and activity of transfemoral amputees using mechanical and microprocessor-controlled prosthetic knees. Kaufman KR; Levine JA; Brey RH; McCrady SK; Padgett DJ; Joyner MJ Arch Phys Med Rehabil; 2008 Jul; 89(7):1380-5. PubMed ID: 18586142 [TBL] [Abstract][Full Text] [Related]
13. Effects of walking speed and prosthetic knee control type on external mechanical work in transfemoral prosthesis users. Pinhey SR; Murata H; Hisano G; Ichimura D; Hobara H; Major MJ J Biomech; 2022 Mar; 134():110984. PubMed ID: 35182901 [TBL] [Abstract][Full Text] [Related]
14. Safety and function of a prototype microprocessor-controlled knee prosthesis for low active transfemoral amputees switching from a mechanic knee prosthesis: a pilot study. Hasenoehrl T; Schmalz T; Windhager R; Domayer S; Dana S; Ambrozy C; Palma S; Crevenna R Disabil Rehabil Assist Technol; 2018 Feb; 13(2):157-165. PubMed ID: 28399722 [TBL] [Abstract][Full Text] [Related]
15. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees. Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114 [TBL] [Abstract][Full Text] [Related]
16. Mobility function of a prosthetic knee joint with an automatic stance phase lock. Andrysek J; Klejman S; Torres-Moreno R; Heim W; Steinnagel B; Glasford S Prosthet Orthot Int; 2011 Jun; 35(2):163-70. PubMed ID: 21697198 [TBL] [Abstract][Full Text] [Related]
17. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms. Morgenroth DC; Roland M; Pruziner AL; Czerniecki JM Clin Biomech (Bristol); 2018 Jun; 55():65-72. PubMed ID: 29698851 [TBL] [Abstract][Full Text] [Related]
18. Intra-individual biomechanical effects of a non-microprocessor-controlled stance-yielding prosthetic knee during ramp descent in persons with unilateral transfemoral amputation. Okita Y; Yamasaki N; Nakamura T; Mita T; Kubo T; Mitsumoto A; Akune T Prosthet Orthot Int; 2019 Feb; 43(1):55-61. PubMed ID: 30051754 [TBL] [Abstract][Full Text] [Related]
19. A clinical comparison of variable-damping and mechanically passive prosthetic knee devices. Johansson JL; Sherrill DM; Riley PO; Bonato P; Herr H Am J Phys Med Rehabil; 2005 Aug; 84(8):563-75. PubMed ID: 16034225 [TBL] [Abstract][Full Text] [Related]
20. Benefits of the Genium microprocessor controlled prosthetic knee on ambulation, mobility, activities of daily living and quality of life: a systematic literature review. Mileusnic MP; Rettinger L; Highsmith MJ; Hahn A Disabil Rehabil Assist Technol; 2021 Jul; 16(5):453-464. PubMed ID: 31469023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]