BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 31798017)

  • 21. Energy expenditure and biomechanical characteristics of lower limb amputee gait: the influence of prosthetic alignment and different prosthetic components.
    Schmalz T; Blumentritt S; Jarasch R
    Gait Posture; 2002 Dec; 16(3):255-63. PubMed ID: 12443950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional gait analysis of trans-femoral amputees using two different single-axis prosthetic knees with hydraulic swing-phase control: Kinematic and kinetic comparison of two prosthetic knees.
    Sapin E; Goujon H; de Almeida F; Fodé P; Lavaste F
    Prosthet Orthot Int; 2008 Jun; 32(2):201-18. PubMed ID: 18569888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetic asymmetry in transfemoral amputees while performing sit to stand and stand to sit movements.
    Highsmith MJ; Kahle JT; Carey SL; Lura DJ; Dubey RV; Csavina KR; Quillen WS
    Gait Posture; 2011 May; 34(1):86-91. PubMed ID: 21524913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A control method for transfemoral prosthetic knees in level walking and stair ascending based on thigh angular motion.
    Inoue K; Pripunnochai A; Wada T
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4638-4641. PubMed ID: 28269309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of dynamic models of the Mauch prosthetic knee for prospective gait simulation.
    Chien MS; Erdemir A; van den Bogert AJ; Smith WA
    J Biomech; 2014 Sep; 47(12):3178-84. PubMed ID: 25059894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Does having a computerized prosthetic knee influence cognitive performance during amputee walking?
    Williams RM; Turner AP; Orendurff M; Segal AD; Klute GK; Pecoraro J; Czerniecki J
    Arch Phys Med Rehabil; 2006 Jul; 87(7):989-94. PubMed ID: 16813788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduced cortical brain activity with the use of microprocessor-controlled prosthetic knees during walking.
    Möller S; Rusaw D; Hagberg K; Ramstrand N
    Prosthet Orthot Int; 2019 Jun; 43(3):257-265. PubMed ID: 30375285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Control Method for Transfemoral Prosthetic Knees Based on Thigh Angular Motion
    Inoue K; Fukuda T; Wada T
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6644-6647. PubMed ID: 31947365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative biomechanical analysis of current microprocessor-controlled prosthetic knee joints.
    Bellmann M; Schmalz T; Blumentritt S
    Arch Phys Med Rehabil; 2010 Apr; 91(4):644-52. PubMed ID: 20382300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of a user-adaptive prosthetic knee on planned gait termination.
    Prinsen EC; Nederhand MJ; Koopman BF; Rietman JS
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1254-1259. PubMed ID: 28813993
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional assessment and satisfaction of transfemoral amputees with low mobility (FASTK2): A clinical trial of microprocessor-controlled vs. non-microprocessor-controlled knees.
    Kaufman KR; Bernhardt KA; Symms K
    Clin Biomech (Bristol, Avon); 2018 Oct; 58():116-122. PubMed ID: 30077128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy costs and performance of transfemoral amputees and non-amputees during walking and running: A pilot study.
    Mengelkoch LJ; Kahle JT; Highsmith MJ
    Prosthet Orthot Int; 2017 Oct; 41(5):484-491. PubMed ID: 27885098
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Are Gait Parameters for Through-knee Amputees Different From Matched Transfemoral Amputees?
    Schuett DJ; Wyatt MP; Kingsbury T; Thesing N; Dromsky DM; Kuhn KM
    Clin Orthop Relat Res; 2019 Apr; 477(4):821-825. PubMed ID: 30811368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plantar pressure analysis of above-knee amputee with a developed microprocessor-controlled prosthetic knee.
    Cao W; Yu H; Meng Q; Chen W; Li S
    Acta Bioeng Biomech; 2018; 20(4):33-40. PubMed ID: 30821287
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prosthetic Knee Selection for Individuals with Unilateral Transfemoral Amputation: A Clinical Practice Guideline.
    Stevens PM; Wurdeman SR
    J Prosthet Orthot; 2019 Jan; 31(1):2-8. PubMed ID: 30662248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinematics in the terminal swing phase of unilateral transfemoral amputees: microprocessor-controlled versus swing-phase control prosthetic knees.
    Mâaref K; Martinet N; Grumillier C; Ghannouchi S; André JM; Paysant J
    Arch Phys Med Rehabil; 2010 Jun; 91(6):919-25. PubMed ID: 20510984
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The effects of domestic mechanical knee joints on pelvic motion in transfemoral amputees.
    Alsancak S; Guner S; Celebi F
    Disabil Rehabil Assist Technol; 2021 Jul; 16(5):446-452. PubMed ID: 31368830
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maximum Swing Flexion or Gait Symmetry: A Comparative Evaluation of Control Targets on Metabolic Energy Expenditure of Amputee Using Intelligent Prosthetic Knee.
    Cao W; Zhao W; Yu H; Chen W; Meng Q
    Biomed Res Int; 2018; 2018():2898546. PubMed ID: 30584532
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees.
    Burnfield JM; Eberly VJ; Gronely JK; Perry J; Yule WJ; Mulroy SJ
    Prosthet Orthot Int; 2012 Mar; 36(1):95-104. PubMed ID: 22223685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Impacts of Microprocessor-Controlled Versus Non-microprocessor-Controlled Prosthetic Knee Joints Among Transfemoral Amputees on Functional Outcomes: A Comparative Study.
    Alzeer AM; Bhaskar Raj N; Shahine EM; Nadiah WA
    Cureus; 2022 Apr; 14(4):e24331. PubMed ID: 35607529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.