These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31798024)

  • 21. Intracochlear Sound Pressure Measurements in Normal Human Temporal Bones During Bone Conduction Stimulation.
    Stieger C; Guan X; Farahmand RB; Page BF; Merchant JP; Abur D; Nakajima HH
    J Assoc Res Otolaryngol; 2018 Oct; 19(5):523-539. PubMed ID: 30171386
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transmission of bone conducted sound - correlation between hearing perception and cochlear vibration.
    Eeg-Olofsson M; Stenfelt S; Taghavi H; Reinfeldt S; Håkansson B; Tengstrand T; Finizia C
    Hear Res; 2013 Dec; 306():11-20. PubMed ID: 24047594
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effect of fixation of superior mallear ligament and anterior mallear ligament on the middle ear transfer function-finite element modeling].
    Huang H; Wang J
    Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2016 Dec; 30(24):1935-1939. PubMed ID: 29798268
    [No Abstract]   [Full Text] [Related]  

  • 24. Round window stimulation with the floating mass transducer at constant pretension.
    Salcher R; Schwab B; Lenarz T; Maier H
    Hear Res; 2014 Aug; 314():1-9. PubMed ID: 24727490
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measurement of stapes vibration in Human temporal bones by round window stimulation using a 3-coil transducer.
    Shin DH; Kim DW; Lim HG; Jung ES; Seong KW; Lee JH; Kim MN; Cho JH
    Biomed Mater Eng; 2014; 24(1):405-11. PubMed ID: 24211922
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling sound transmission of human middle ear and its clinical applications using finite element analysis.
    Chen SI; Lee MH; Yao CM; Chen PR; Chou YF; Liu TC; Song YL; Lee CF
    Kaohsiung J Med Sci; 2013 Mar; 29(3):133-9. PubMed ID: 23465416
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of middle ear quasi-static stiffness on sound transmission quantified by a novel 3-axis optical force sensor.
    Dobrev I; Sim JH; Aqtashi B; Huber AM; Linder T; Röösli C
    Hear Res; 2018 Jan; 357():1-9. PubMed ID: 29149722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of Coupling Efficiency in Round Window Vibroplasty With a New Handheld Probe.
    Schwarz D; Pazen D; Gostian AO; Lüers JC; Hüttenbrink KB
    Otol Neurotol; 2019 Jan; 40(1):e40-e47. PubMed ID: 30531640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional stapes footplate motion in human temporal bones.
    Hato N; Stenfelt S; Goode RL
    Audiol Neurootol; 2003; 8(3):140-52. PubMed ID: 12679625
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional finite element modeling of human ear for sound transmission.
    Gan RZ; Feng B; Sun Q
    Ann Biomed Eng; 2004 Jun; 32(6):847-59. PubMed ID: 15255215
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A comparative study of MED-EL FMT attachment to the long process of the incus in intact middle ears and its attachment to disarticulated stapes head.
    Chen T; Ren LJ; Yin DM; Li J; Yang L; Dai PD; Zhang TY
    Hear Res; 2017 Sep; 353():97-103. PubMed ID: 28666703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Implementation of a direct install 3-pole type EM transducer in round window niche for implantable middle ear hearing aids.
    Shin DH; Lim HG; Jung ES; Wei Q; Seong KW; Lee JH; Lee SH; Cho JH
    Biomed Mater Eng; 2014; 24(6):2503-10. PubMed ID: 25226951
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reinforced active middle ear implant fixation in incus vibroplasty.
    Mlynski R; Dalhoff E; Heyd A; Wildenstein D; Hagen R; Gummer AW; Schraven SP
    Ear Hear; 2015 Jan; 36(1):72-81. PubMed ID: 25099400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The floating mass transducer at the round window: direct transmission or bone conduction?
    Arnold A; Kompis M; Candreia C; Pfiffner F; Häusler R; Stieger C
    Hear Res; 2010 May; 263(1-2):120-7. PubMed ID: 20005939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimum Coupling of an Active Middle Ear Actuator: Effect of Loading Forces on Actuator Output and Conductive Losses.
    Gamm UA; Grossöhmichen M; Salcher RB; Prenzler NK; Lenarz T; Maier H
    Otol Neurotol; 2019 Jul; 40(6):789-796. PubMed ID: 30994569
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bone conduction: an explanation for this phenomenon comprising complex mechanisms.
    Dauman R
    Eur Ann Otorhinolaryngol Head Neck Dis; 2013 Sep; 130(4):209-13. PubMed ID: 23743177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A human temporal bone study of stapes footplate movement.
    Heiland KE; Goode RL; Asai M; Huber AM
    Am J Otol; 1999 Jan; 20(1):81-6. PubMed ID: 9918179
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Factors contributing to bone conduction: the middle ear.
    Stenfelt S; Hato N; Goode RL
    J Acoust Soc Am; 2002 Feb; 111(2):947-59. PubMed ID: 11863197
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracochlear pressure in cadaver heads under bone conduction and intracranial fluid stimulation.
    Dobrev I; Farahmandi T; Pfiffner F; Röösli C
    Hear Res; 2022 Aug; 421():108506. PubMed ID: 35459531
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computer-integrated finite element modeling of human middle ear.
    Sun Q; Gan RZ; Chang KH; Dormer KJ
    Biomech Model Mechanobiol; 2002 Oct; 1(2):109-22. PubMed ID: 14595544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.