These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31798297)

  • 1. An Adaptive Moving Mesh Method for Forced Curve Shortening Flow.
    Mackenzie JA; Nolan M; Rowlatt CF; Insall RH
    SIAM J Sci Comput; 2019; 41(2):A1170-A1200. PubMed ID: 31798297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational method for the coupled solution of reaction-diffusion equations on evolving domains and manifolds: Application to a model of cell migration and chemotaxis.
    MacDonald G; Mackenzie JA; Nolan M; Insall RH
    J Comput Phys; 2016 Mar; 309():207-226. PubMed ID: 27330221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic adaptive moving mesh finite-volume method for the blood flow and coagulation modeling.
    Terekhov KM; Butakov ID; Danilov AA; Vassilevski YV
    Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3731. PubMed ID: 38018385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arbitrary Lagrangian-Eulerian unstructured finite-volume lattice-Boltzmann method for computing two-dimensional compressible inviscid flows over moving bodies.
    Hejranfar K; Hashemi Nasab H; Azampour MH
    Phys Rev E; 2020 Feb; 101(2-1):023308. PubMed ID: 32168620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptively deformed mesh based interface method for elliptic equations with discontinuous coefficients.
    Xia K; Zhan M; Wan D; Wei GW
    J Comput Phys; 2012 Feb; 231(4):1440-1461. PubMed ID: 22586356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical study of adaptive space and time discretisations for Gross-Pitaevskii equations.
    Thalhammer M; Abhau J
    J Comput Phys; 2012 Aug; 231(20):6665-6681. PubMed ID: 25550676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High order approximation on non-uniform meshes for generalized time-fractional telegraph equation.
    Sultana F; Pandey RK; Singh D; Agrawal OP
    MethodsX; 2022; 9():101905. PubMed ID: 36405364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical solutions for isoelectric focusing and isotachophoresis problems.
    Chou Y; Yang RJ
    J Chromatogr A; 2010 Jan; 1217(3):394-404. PubMed ID: 19962708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moving Particles Through a Finite Element Mesh.
    Peskin AP; Hardin GR
    J Res Natl Inst Stand Technol; 1998; 103(1):77-91. PubMed ID: 28009377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Time Two-Mesh Compact Difference Method for the One-Dimensional Nonlinear Schrödinger Equation.
    He S; Liu Y; Li H
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh.
    Li Y; LeBoeuf EJ; Basu PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046711. PubMed ID: 16383571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Requirements for mesh resolution in 3D computational hemodynamics.
    Prakash S; Ethier CR
    J Biomech Eng; 2001 Apr; 123(2):134-44. PubMed ID: 11340874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reaction rates for reaction-diffusion kinetics on unstructured meshes.
    Hellander S; Petzold L
    J Chem Phys; 2017 Feb; 146(6):064101. PubMed ID: 28201913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Interface-Fitted Finite Element Level Set Method with Application to Solidification and Solvation.
    Li B; Shopple J
    Commun Comput Phys; 2011 Jul; 10(1):32-56. PubMed ID: 24058382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of mesh style and grid convergence on particle deposition in bifurcating airway models with comparisons to experimental data.
    Longest PW; Vinchurkar S
    Med Eng Phys; 2007 Apr; 29(3):350-66. PubMed ID: 16814588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time domain room acoustic simulations using the spectral element method.
    Pind F; Engsig-Karup AP; Jeong CH; Hesthaven JS; Mejling MS; Strømann-Andersen J
    J Acoust Soc Am; 2019 Jun; 145(6):3299. PubMed ID: 31255119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas kinetic flux solver based high-order finite-volume method for simulation of two-dimensional compressible flows.
    Yang LM; Shu C; Chen Z; Liu YY; Wu J; Shen X
    Phys Rev E; 2021 Jul; 104(1-2):015305. PubMed ID: 34412237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generating smooth surface meshes from multi-region medical images.
    d'Otreppe V; Boman R; Ponthot JP
    Int J Numer Method Biomed Eng; 2012; 28(6-7):642-60. PubMed ID: 25364843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anisotropic adaptive finite element method for modelling blood flow.
    Müller J; Sahni O; Li X; Jansen KE; Shephard MS; Taylor CA
    Comput Methods Biomech Biomed Engin; 2005 Oct; 8(5):295-305. PubMed ID: 16298851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.