These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31798297)

  • 41. Least-squares finite-element lattice Boltzmann method.
    Li Y; LeBoeuf EJ; Basu PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):065701. PubMed ID: 15244659
    [TBL] [Abstract][Full Text] [Related]  

  • 42. An adaptive hybridizable discontinuous Galerkin approach for cardiac electrophysiology.
    Hoermann JM; Bertoglio C; Kronbichler M; Pfaller MR; Chabiniok R; Wall WA
    Int J Numer Method Biomed Eng; 2018 May; 34(5):e2959. PubMed ID: 29316340
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Content-Adaptive Finite Element Mesh Generation of 3-D Complex MR Volumes for Bioelectromagnetic Problems.
    Lee W; Kim TS; Cho M; Lee S
    Conf Proc IEEE Eng Med Biol Soc; 2005; 2005():4373-6. PubMed ID: 17281204
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Technologies for supporting high-order geodesic mesh frameworks for computational astrophysics and space sciences.
    Florinski V; Balsara DS; Garain S; Gurski KF
    Comput Astrophys Cosmol; 2020; 7(1):1. PubMed ID: 32309112
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combining H-Adaptivity with the Element Splitting Method for Crack Simulation in Large Structures.
    Song S; Braun M; Wiegard B; Herrnring H; Ehlers S
    Materials (Basel); 2021 Dec; 15(1):. PubMed ID: 35009384
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Open-Source Mesh Generation Platform for Biophysical Modeling Using Realistic Cellular Geometries.
    Lee CT; Laughlin JG; Moody JB; Amaro RE; McCammon JA; Holst M; Rangamani P
    Biophys J; 2020 Mar; 118(5):1003-1008. PubMed ID: 32032503
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Adaptive meshing technique applied to an orthopaedic finite element contact problem.
    Roarty CM; Grosland NM
    Iowa Orthop J; 2004; 24():21-9. PubMed ID: 15296201
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A parallel second-order adaptive mesh algorithm for incompressible flow in porous media.
    Pau GS; Almgren AS; Bell JB; Lijewski MJ
    Philos Trans A Math Phys Eng Sci; 2009 Nov; 367(1907):4633-54. PubMed ID: 19840985
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Turbulent finite element model applied for blood flow calculation in arterial bifurcation.
    Nikolić A; Topalović M; Simić V; Filipović N
    Comput Methods Programs Biomed; 2021 Sep; 209():106328. PubMed ID: 34407452
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A hybrid explicit implicit staggered grid finite-difference scheme for the first-order acoustic wave equation modeling.
    Liang W; Wang Y; Cao J; Iturrarán-Viveros U
    Sci Rep; 2022 Jun; 12(1):10967. PubMed ID: 35768539
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A fast alternating direction implicit algorithm for geometric flow equations in biomolecular surface generation.
    Tian W; Zhao S
    Int J Numer Method Biomed Eng; 2014 Apr; 30(4):490-516. PubMed ID: 24574191
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A divergence-free semi-implicit finite volume scheme for ideal, viscous, and resistive magnetohydrodynamics.
    Dumbser M; Balsara DS; Tavelli M; Fambri F
    Int J Numer Methods Fluids; 2019 Jan; 89(1-2):16-42. PubMed ID: 31293284
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Semi-implicit Non-conforming Finite-Element Schemes for Cardiac Electrophysiology: A Framework for Mesh-Coarsening Heart Simulations.
    Jilberto J; Hurtado DE
    Front Physiol; 2018; 9():1513. PubMed ID: 30425648
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A uniformly convergent numerical scheme for solving singularly perturbed differential equations with large spatial delay.
    Ejere AH; Duressa GF; Woldaregay MM; Dinka TG
    SN Appl Sci; 2022; 4(12):324. PubMed ID: 36405546
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mesoscale dynamic coupling of finite- and discrete-element methods for fluid-particle interactions.
    Srivastava S; Yazdchi K; Luding S
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2021):. PubMed ID: 24982251
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Feature-preserving adaptive mesh generation for molecular shape modeling and simulation.
    Yu Z; Holst MJ; Cheng Y; McCammon JA
    J Mol Graph Model; 2008 Jun; 26(8):1370-80. PubMed ID: 18337134
    [TBL] [Abstract][Full Text] [Related]  

  • 57. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.
    Wan X; Li Z
    Discrete Continuous Dyn Syst Ser B; 2012 Jun; 17(4):1155-1174. PubMed ID: 22701346
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adaptive mesh refinement techniques for the immersed interface method applied to flow problems.
    Li Z; Song P
    Comput Struct; 2013 Jun; 122():249-258. PubMed ID: 23794763
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adaptive and Quality Quadrilateral/Hexahedral Meshing from Volumetric Data.
    Zhang Y; Bajaj C
    Comput Methods Appl Mech Eng; 2006 Feb; 195(9):942-960. PubMed ID: 19750180
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A new method for the automatic mesh generation of bone segments from CT data.
    Viceconti M; Zannoni C; Testi D; Cappello A
    J Med Eng Technol; 1999; 23(2):77-81. PubMed ID: 10356679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.