BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 31798400)

  • 1. Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks.
    Kungl AF; Schmitt S; Klähn J; Müller P; Baumbach A; Dold D; Kugele A; Müller E; Koke C; Kleider M; Mauch C; Breitwieser O; Leng L; Gürtler N; Güttler M; Husmann D; Husmann K; Hartel A; Karasenko V; Grübl A; Schemmel J; Meier K; Petrovici MA
    Front Neurosci; 2019; 13():1201. PubMed ID: 31798400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The BrainScaleS-2 Accelerated Neuromorphic System With Hybrid Plasticity.
    Pehle C; Billaudelle S; Cramer B; Kaiser J; Schreiber K; Stradmann Y; Weis J; Leibfried A; Müller E; Schemmel J
    Front Neurosci; 2022; 16():795876. PubMed ID: 35281488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Six networks on a universal neuromorphic computing substrate.
    Pfeil T; Grübl A; Jeltsch S; Müller E; Müller P; Petrovici MA; Schmuker M; Brüderle D; Schemmel J; Meier K
    Front Neurosci; 2013; 7():11. PubMed ID: 23423583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochasticity from function - Why the Bayesian brain may need no noise.
    Dold D; Bytschok I; Kungl AF; Baumbach A; Breitwieser O; Senn W; Schemmel J; Meier K; Petrovici MA
    Neural Netw; 2019 Nov; 119():200-213. PubMed ID: 31450073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Demonstrating Advantages of Neuromorphic Computation: A Pilot Study.
    Wunderlich T; Kungl AF; Müller E; Hartel A; Stradmann Y; Aamir SA; Grübl A; Heimbrecht A; Schreiber K; Stöckel D; Pehle C; Billaudelle S; Kiene G; Mauch C; Schemmel J; Meier K; Petrovici MA
    Front Neurosci; 2019; 13():260. PubMed ID: 30971881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuromorphic Engineering: From Biological to Spike-Based Hardware Nervous Systems.
    Yang JQ; Wang R; Ren Y; Mao JY; Wang ZP; Zhou Y; Han ST
    Adv Mater; 2020 Dec; 32(52):e2003610. PubMed ID: 33165986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain.
    Thakur CS; Molin JL; Cauwenberghs G; Indiveri G; Kumar K; Qiao N; Schemmel J; Wang R; Chicca E; Olson Hasler J; Seo JS; Yu S; Cao Y; van Schaik A; Etienne-Cummings R
    Front Neurosci; 2018; 12():891. PubMed ID: 30559644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surrogate gradients for analog neuromorphic computing.
    Cramer B; Billaudelle S; Kanya S; Leibfried A; Grübl A; Karasenko V; Pehle C; Schreiber K; Stradmann Y; Weis J; Schemmel J; Zenke F
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35042792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons.
    Probst D; Petrovici MA; Bytschok I; Bill J; Pecevski D; Schemmel J; Meier K
    Front Comput Neurosci; 2015; 9():13. PubMed ID: 25729361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.
    Milde MB; Blum H; Dietmüller A; Sumislawska D; Conradt J; Indiveri G; Sandamirskaya Y
    Front Neurorobot; 2017; 11():28. PubMed ID: 28747883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superconducting Nanowire Spiking Element for Neural Networks.
    Toomey E; Segall K; Castellani M; Colangelo M; Lynch N; Berggren KK
    Nano Lett; 2020 Nov; 20(11):8059-8066. PubMed ID: 32965119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping Generative Models onto a Network of Digital Spiking Neurons.
    Pedroni BU; Das S; Arthur JV; Merolla PA; Jackson BL; Modha DS; Kreutz-Delgado K; Cauwenberghs G
    IEEE Trans Biomed Circuits Syst; 2016 Aug; 10(4):837-54. PubMed ID: 27214915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonvolatile Memory Materials for Neuromorphic Intelligent Machines.
    Jeong DS; Hwang CS
    Adv Mater; 2018 Oct; 30(42):e1704729. PubMed ID: 29667255
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromorphic computing for content-based image retrieval.
    Liu TY; Mahjoubfar A; Prusinski D; Stevens L
    PLoS One; 2022; 17(4):e0264364. PubMed ID: 35385477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuromorphic artificial intelligence systems.
    Ivanov D; Chezhegov A; Kiselev M; Grunin A; Larionov D
    Front Neurosci; 2022; 16():959626. PubMed ID: 36188479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural plasticity on an accelerated analog neuromorphic hardware system.
    Billaudelle S; Cramer B; Petrovici MA; Schreiber K; Kappel D; Schemmel J; Meier K
    Neural Netw; 2021 Jan; 133():11-20. PubMed ID: 33091719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solving Constraint Satisfaction Problems with Networks of Spiking Neurons.
    Jonke Z; Habenschuss S; Maass W
    Front Neurosci; 2016; 10():118. PubMed ID: 27065785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploiting noise as a resource for computation and learning in spiking neural networks.
    Ma G; Yan R; Tang H
    Patterns (N Y); 2023 Oct; 4(10):100831. PubMed ID: 37876899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.