These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 31798410)

  • 41. Lesion-induced plasticity of central neurons: sprouting of single fibres in the rat hippocampus after unilateral entorhinal cortex lesion.
    Deller T; Frotscher M
    Prog Neurobiol; 1997 Dec; 53(6):687-727. PubMed ID: 9447617
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tracing of the entorhinal-hippocampal pathway in vitro.
    Kluge A; Hailer NP; Horvath TL; Bechmann I; Nitsch R
    Hippocampus; 1998; 8(1):57-68. PubMed ID: 9519887
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The commissural connections of the monkey hippocampal formation.
    Amaral DG; Insausti R; Cowan WM
    J Comp Neurol; 1984 Apr; 224(3):307-36. PubMed ID: 6715582
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Correlated axonal sprouting and dendritic spine formation during kainate-induced neuronal morphogenesis in the dentate gyrus of adult mice.
    Suzuki F; Makiura Y; Guilhem D; Sørensen JC; Onteniente B
    Exp Neurol; 1997 May; 145(1):203-13. PubMed ID: 9184122
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Outgrowth-promoting molecules in the adult hippocampus after perforant path lesion.
    Savaskan NE; Skutella T; Bräuer AU; Plaschke M; Ninnemann O; Nitsch R
    Eur J Neurosci; 2000 Mar; 12(3):1024-32. PubMed ID: 10762333
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Time course and reversibility of ethanol's suppressive effects on axon sprouting in the dentate gyrus of the adult rat.
    Lind MD; Goodlett CR; West JR
    Alcohol Clin Exp Res; 1988 Jun; 12(3):433-9. PubMed ID: 3044176
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Histochemical evidence of altered development of cholinergic fibers in the rat dentate gyrus following lesions. II. Effects of partial entorhinal and simultaneous multiple lesions.
    Nadler JV; Cotman CW; Paoletti C; Lynch GS
    J Comp Neurol; 1977 Feb; 171(4):589-604. PubMed ID: 833359
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Distribution, ultrastructure, and connectivity of calretinin-immunoreactive mossy cells of the mouse dentate gyrus.
    Blasco-Ibáñez JM; Freund TF
    Hippocampus; 1997; 7(3):307-20. PubMed ID: 9228528
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Unilateral entorhinal denervation leads to long-lasting dendritic alterations of mouse hippocampal granule cells.
    Vuksic M; Del Turco D; Vlachos A; Schuldt G; Müller CM; Schneider G; Deller T
    Exp Neurol; 2011 Aug; 230(2):176-85. PubMed ID: 21536031
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Entorhinal axons project to dentate gyrus in organotypic slice co-culture.
    Li D; Field PM; Starega U; Li Y; Raisman G
    Neuroscience; 1993 Feb; 52(4):799-813. PubMed ID: 7680800
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effect of apolipoprotein E deficiency on reactive sprouting in the dentate gyrus of the hippocampus following entorhinal cortex lesion: role of the astroglial response.
    Champagne D; Rochford J; Poirier J
    Exp Neurol; 2005 Jul; 194(1):31-42. PubMed ID: 15899241
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Different signals control laminar specificity of commissural and entorhinal fibers to the dentate gyrus.
    Zhao S; Förster E; Chai X; Frotscher M
    J Neurosci; 2003 Aug; 23(19):7351-7. PubMed ID: 12917369
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ephrin-A5 modulates the topographic mapping and connectivity of commissural axons in murine hippocampus.
    Otal R; Burgaya F; Frisén J; Soriano E; Martínez A
    Neuroscience; 2006 Aug; 141(1):109-21. PubMed ID: 16690216
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calcium homeostasis of acutely denervated and lesioned dentate gyrus in organotypic entorhino-hippocampal co-cultures.
    Müller CM; Vlachos A; Deller T
    Cell Calcium; 2010 Mar; 47(3):242-52. PubMed ID: 20053446
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Distribution of calretinin immunoreactivity in the mouse dentate gyrus: II. Mossy cells, with special reference to their dorsoventral difference in calretinin immunoreactivity.
    Fujise N; Liu Y; Hori N; Kosaka T
    Neuroscience; 1998 Jan; 82(1):181-200. PubMed ID: 9483514
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system.
    Sutula TP; Dudek FE
    Prog Brain Res; 2007; 163():541-63. PubMed ID: 17765737
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The effect of collateral sprouting on the density of innervation of normal target sites: implications for theories on the regulation of the size of developing synaptic domains.
    Gall C; McWilliams R; Lynch G
    Brain Res; 1979 Oct; 175(1):37-47. PubMed ID: 487150
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Topographic activation of the medial entorhinal cortex by presubicular commissural projections.
    Bartesaghi R; Di Maio V; Gessi T
    J Comp Neurol; 2005 Jul; 487(3):283-99. PubMed ID: 15892102
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Endogenous synaptogenesis in the deafferented dentate gyrus does not exclude synapse formation by embryonic entorhinal transplants.
    Field PM; Zhou CF; Li Y; Raisman G
    Brain Res; 1997 Mar; 751(2):352-5. PubMed ID: 9099828
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A novel population of calretinin-positive neurons comprises reelin-positive Cajal-Retzius cells in the hippocampal formation of the adult domestic pig.
    Abrahám H; Tóth Z; Seress L
    Hippocampus; 2004; 14(3):385-401. PubMed ID: 15132437
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.