These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 31798549)

  • 1. Critical Orientation in the Jungle of Currently Available Methods and Types of Data for Source Attribution of Foodborne Diseases.
    Mughini-Gras L; Kooh P; Fravalo P; Augustin JC; Guillier L; David J; Thébault A; Carlin F; Leclercq A; Jourdan-Da-Silva N; Pavio N; Villena I; Sanaa M; Watier L
    Front Microbiol; 2019; 10():2578. PubMed ID: 31798549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing the applicability of currently available methods for attributing foodborne disease to sources, including food and food commodities.
    Pires SM
    Foodborne Pathog Dis; 2013 Mar; 10(3):206-13. PubMed ID: 23489045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New paradigms for Salmonella source attribution based on microbial subtyping.
    Mughini-Gras L; Franz E; van Pelt W
    Food Microbiol; 2018 May; 71():60-67. PubMed ID: 29366470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phenotypic and Genotypic Eligible Methods for
    Ferrari RG; Panzenhagen PHN; Conte-Junior CA
    Front Microbiol; 2017; 8():2587. PubMed ID: 29312260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Salmonella source attribution based on microbial subtyping.
    Barco L; Barrucci F; Olsen JE; Ricci A
    Int J Food Microbiol; 2013 May; 163(2-3):193-203. PubMed ID: 23562696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic review of expert elicitation methods as a tool for source attribution of enteric illness.
    Butler AJ; Thomas MK; Pintar KD
    Foodborne Pathog Dis; 2015 May; 12(5):367-82. PubMed ID: 25826450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracing the sources of human salmonellosis: a multi-model comparison of phenotyping and genotyping methods.
    Mughini-Gras L; Smid J; Enserink R; Franz E; Schouls L; Heck M; van Pelt W
    Infect Genet Evol; 2014 Dec; 28():251-60. PubMed ID: 25315490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Molecular Typing Results in Source Attribution Models: The Case of Multiple Locus Variable Number Tandem Repeat Analysis (MLVA) of Salmonella Isolates Obtained from Integrated Surveillance in Denmark.
    de Knegt LV; Pires SM; Löfström C; Sørensen G; Pedersen K; Torpdahl M; Nielsen EM; Hald T
    Risk Anal; 2016 Mar; 36(3):571-88. PubMed ID: 27002674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Attribution of the French human Salmonellosis cases to the main food-sources according to the type of surveillance data.
    David JM; Sanders P; Bemrah N; Granier SA; Denis M; Weill FX; Guillemot D; Watier L
    Prev Vet Med; 2013 May; 110(1):12-27. PubMed ID: 23453456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of foodborne outbreak data reported internationally for source attribution.
    Greig JD; Ravel A
    Int J Food Microbiol; 2009 Mar; 130(2):77-87. PubMed ID: 19178974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of parameterization in comparing source attribution models based on microbial subtyping for salmonellosis.
    Jabin H; Correia Carreira G; Valentin L; Käsbohrer A
    Zoonoses Public Health; 2019 Dec; 66(8):943-960. PubMed ID: 31478354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Source Attribution and Risk Assessment of Antimicrobial Resistance.
    Pires SM; Duarte AS; Hald T
    Microbiol Spectr; 2018 May; 6(3):. PubMed ID: 29916343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. sourceR: Classification and source attribution of infectious agents among heterogeneous populations.
    Miller P; Marshall J; French N; Jewell C
    PLoS Comput Biol; 2017 May; 13(5):e1005564. PubMed ID: 28558033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Source Attribution of Foodborne Diseases: Potentialities, Hurdles, and Future Expectations.
    Mughini-Gras L; Kooh P; Augustin JC; David J; Fravalo P; Guillier L; Jourdan-Da-Silva N; Thébault A; Sanaa M; Watier L;
    Front Microbiol; 2018; 9():1983. PubMed ID: 30233509
    [No Abstract]   [Full Text] [Related]  

  • 15. Salmonella source attribution based on microbial subtyping: does including data on food consumption matter?
    Mughini-Gras L; van Pelt W
    Int J Food Microbiol; 2014 Nov; 191():109-15. PubMed ID: 25261828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bayesian temporal source attribution of foodborne zoonoses: Campylobacter in Finland and Norway.
    Ranta J; Matjushin D; Virtanen T; Kuusi M; Viljugrein H; Hofshagen M; Hakkinen M
    Risk Anal; 2011 Jul; 31(7):1156-71. PubMed ID: 21231942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attributing human foodborne illness to food sources and water in Latin America and the Caribbean using data from outbreak investigations.
    Pires SM; Vieira AR; Perez E; Lo Fo Wong D; Hald T
    Int J Food Microbiol; 2012 Jan; 152(3):129-38. PubMed ID: 21570732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A likelihood ratio-based approach for improved source attribution in microbiological forensic investigations.
    Lindgren P; Myrtennäs K; Forsman M; Johansson A; Stenberg P; Nordgaard A; Ahlinder J
    Forensic Sci Int; 2019 Sep; 302():109869. PubMed ID: 31302416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Association between pacifier use and breast-feeding, sudden infant death syndrome, infection and dental malocclusion.
    Callaghan A; Kendall G; Lock C; Mahony A; Payne J; Verrier L
    JBI Libr Syst Rev; 2005; 3(6):1-33. PubMed ID: 27819973
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.