BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31799190)

  • 21. The Dual Effect of the BMP9-ALK1 Pathway in Blood Vessels: An Opportunity for Cancer Therapy Improvement?
    Ayuso-Íñigo B; Méndez-García L; Pericacho M; Muñoz-Félix JM
    Cancers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Towards Immunotherapy-Induced Normalization of the Tumor Microenvironment.
    Melo V; Bremer E; Martin JD
    Front Cell Dev Biol; 2022; 10():908389. PubMed ID: 35712656
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines.
    Greish K
    J Drug Target; 2007; 15(7-8):457-64. PubMed ID: 17671892
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tie2-mediated vascular remodeling by ferritin-based protein C nanoparticles confers antitumor and anti-metastatic activities.
    Choi YS; Jang H; Gupta B; Jeong JH; Ge Y; Yong CS; Kim JO; Bae JS; Song IS; Kim IS; Lee YM
    J Hematol Oncol; 2020 Sep; 13(1):123. PubMed ID: 32928251
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Manipulation of immune‒vascular crosstalk: new strategies towards cancer treatment.
    Zhao Y; Yu X; Li J
    Acta Pharm Sin B; 2020 Nov; 10(11):2018-2036. PubMed ID: 33304777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting the vasculature in hepatocellular carcinoma treatment: Starving versus normalizing blood supply.
    Liu K; Zhang X; Xu W; Chen J; Yu J; Gamble JR; McCaughan GW
    Clin Transl Gastroenterol; 2017 Jun; 8(6):e98. PubMed ID: 28617447
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inducing vascular normalization: A promising strategy for immunotherapy.
    Luo X; Zou W; Wei Z; Yu S; Zhao Y; Wu Y; Wang A; Lu Y
    Int Immunopharmacol; 2022 Nov; 112():109167. PubMed ID: 36037653
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pharmacological manipulation of Ezh2 with salvianolic acid B results in tumor vascular normalization and synergizes with cisplatin and T cell-mediated immunotherapy.
    Qian C; Yang C; Tang Y; Zheng W; Zhou Y; Zhang S; Song M; Cheng P; Wei Z; Zhong C; Wan L; Wang A; Zhao Y; Lu Y
    Pharmacol Res; 2022 Aug; 182():106333. PubMed ID: 35779815
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy.
    Jain RK
    Science; 2005 Jan; 307(5706):58-62. PubMed ID: 15637262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tumor Hypoxia Regulates Immune Escape/Invasion: Influence on Angiogenesis and Potential Impact of Hypoxic Biomarkers on Cancer Therapies.
    Abou Khouzam R; Brodaczewska K; Filipiak A; Zeinelabdin NA; Buart S; Szczylik C; Kieda C; Chouaib S
    Front Immunol; 2020; 11():613114. PubMed ID: 33552076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vessel abnormalization: another hallmark of cancer? Molecular mechanisms and therapeutic implications.
    De Bock K; Cauwenberghs S; Carmeliet P
    Curr Opin Genet Dev; 2011 Feb; 21(1):73-9. PubMed ID: 21106363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Persistent vascular normalization as an alternative goal of anti-angiogenic cancer therapy.
    Sato Y
    Cancer Sci; 2011 Jul; 102(7):1253-6. PubMed ID: 21401807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Modulation of pericytes by a fusion protein comprising of a PDGFRβ-antagonistic affibody and TNFα induces tumor vessel normalization and improves chemotherapy.
    Fan Q; Tao Z; Yang H; Shi Q; Wang H; Jia D; Wan L; Zhang J; Cheng J; Lu X
    J Control Release; 2019 May; 302():63-78. PubMed ID: 30930215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis.
    Pan F; Yang W; Li W; Yang XY; Liu S; Li X; Zhao X; Ding H; Qin L; Pan Y
    Tumour Biol; 2017 Jul; 39(7):1010428317708547. PubMed ID: 28714365
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lenalidomide normalizes tumor vessels in colorectal cancer improving chemotherapy activity.
    Leuci V; Maione F; Rotolo R; Giraudo E; Sassi F; Migliardi G; Todorovic M; Gammaitoni L; Mesiano G; Giraudo L; Luraghi P; Leone F; Bussolino F; Grignani G; Aglietta M; Trusolino L; Bertotti A; Sangiolo D
    J Transl Med; 2016 May; 14(1):119. PubMed ID: 27149858
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer.
    Kalyane D; Raval N; Maheshwari R; Tambe V; Kalia K; Tekade RK
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():1252-1276. PubMed ID: 30813007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring Novel Methods for Modulating Tumor Blood Vessels in Cancer Treatment.
    Wong PP; Bodrug N; Hodivala-Dilke KM
    Curr Biol; 2016 Nov; 26(21):R1161-R1166. PubMed ID: 27825457
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tumor angiogenesis and accessibility: role of vascular endothelial growth factor.
    Jain RK
    Semin Oncol; 2002 Dec; 29(6 Suppl 16):3-9. PubMed ID: 12516032
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia.
    Li L; ten Hagen TL; Bolkestein M; Gasselhuber A; Yatvin J; van Rhoon GC; Eggermont AM; Haemmerich D; Koning GA
    J Control Release; 2013 Apr; 167(2):130-7. PubMed ID: 23391444
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunotherapies targeting tumor vasculature: challenges and opportunities.
    Dianat-Moghadam H; Nedaeinia R; Keshavarz M; Azizi M; Kazemi M; Salehi R
    Front Immunol; 2023; 14():1226360. PubMed ID: 37727791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.