BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31799235)

  • 1. Hydrogels Based on Poly(aspartic acid): Synthesis and Applications.
    Adelnia H; Blakey I; Little PJ; Ta HT
    Front Chem; 2019; 7():755. PubMed ID: 31799235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(aspartic acid) in Biomedical Applications: From Polymerization, Modification, Properties, Degradation, and Biocompatibility to Applications.
    Adelnia H; Tran HDN; Little PJ; Blakey I; Ta HT
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2083-2105. PubMed ID: 33797239
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation and Osteosarcoma Cell Cultivation on Poly(aspartic acid) Based Hydrogels.
    Juriga D; Nagy K; Jedlovszky-Hajdú A; Perczel-Kovách K; Chen YM; Varga G; Zrínyi M
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23463-76. PubMed ID: 27541725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(succinimide) nanoparticles as reservoirs for spontaneous and sustained synthesis of poly(aspartic acid) under physiological conditions: potential for vascular calcification therapy and oral drug delivery.
    Adelnia H; Blakey I; Little PJ; Ta HT
    J Mater Chem B; 2023 Mar; 11(12):2650-2662. PubMed ID: 36655707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Poly(aspartic acid) with adjustable pH-dependent solubility.
    Németh C; Gyarmati B; Abdullin T; László K; Szilágyi A
    Acta Biomater; 2017 Feb; 49():486-494. PubMed ID: 27915021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polypeptide-based self-healing hydrogels: Design and biomedical applications.
    Cai L; Liu S; Guo J; Jia YG
    Acta Biomater; 2020 Sep; 113():84-100. PubMed ID: 32634482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supermacroporous chemically cross-linked poly(aspartic acid) hydrogels.
    Gyarmati B; Mészár EZ; Kiss L; Deli MA; László K; Szilágyi A
    Acta Biomater; 2015 Aug; 22():32-8. PubMed ID: 25922304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and swelling properties of novel pH-sensitive poly(aspartic acid) gels.
    Gyenes T; Torma V; Gyarmati B; Zrínyi M
    Acta Biomater; 2008 May; 4(3):733-44. PubMed ID: 18280800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-healing PEG-poly(aspartic acid) hydrogel with rapid shape recovery and drug release.
    An H; Zhu L; Shen J; Li W; Wang Y; Qin J
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110601. PubMed ID: 31675642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue engineering.
    Matricardi P; Di Meo C; Coviello T; Hennink WE; Alhaique F
    Adv Drug Deliv Rev; 2013 Aug; 65(9):1172-87. PubMed ID: 23603210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal ion chelation of poly(aspartic acid): From scale inhibition to therapeutic potentials.
    Adelnia H; Sirous F; Blakey I; Ta HT
    Int J Biol Macromol; 2023 Feb; 229():974-993. PubMed ID: 36584782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of Three-Dimensional Cell Migration in Dopamine-Modified Poly(aspartic acid)-Based Hydrogels.
    Juriga D; Kalman EE; Toth K; Barczikai D; Szöllősi D; Földes A; Varga G; Zrinyi M; Jedlovszky-Hajdu A; Nagy KS
    Gels; 2022 Jan; 8(2):. PubMed ID: 35200447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully amino acid-based hydrogel as potential scaffold for cell culturing and drug delivery.
    Juriga D; Sipos E; Hegedűs O; Varga G; Zrínyi M; Nagy KS; Jedlovszky-Hajdú A
    Beilstein J Nanotechnol; 2019; 10():2579-2593. PubMed ID: 31921537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ gelation of thiolated poly(aspartic acid) derivatives through oxidant-free disulfide formation for ophthalmic drug delivery.
    Szilágyi BÁ; Gyarmati B; Kiss EL; Budai-Szűcs M; Misra A; Csányi E; László K; Szilágyi A
    Colloids Surf B Biointerfaces; 2023 May; 225():113254. PubMed ID: 36996632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sustainable Biomass Lignin-Based Hydrogels: A Review on Properties, Formulation, and Biomedical Applications.
    Hachimi Alaoui C; Réthoré G; Weiss P; Fatimi A
    Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686299
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive review on the COVID-19 vaccine and drug delivery applications of interpenetrating polymer networks.
    Aldaais EA
    Drug Deliv Transl Res; 2023 Mar; 13(3):738-756. PubMed ID: 36443634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(N-isopropylacrylamide)-Based Thermoresponsive Composite Hydrogels for Biomedical Applications.
    Xu X; Liu Y; Fu W; Yao M; Ding Z; Xuan J; Li D; Wang S; Xia Y; Cao M
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32150904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-IPN- and IPN-Based Hydrogels.
    Zoratto N; Matricardi P
    Adv Exp Med Biol; 2018; 1059():155-188. PubMed ID: 29736573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel thermo-responsive hydrogel based on salecan and poly(N-isopropylacrylamide): synthesis and characterization.
    Wei W; Hu X; Qi X; Yu H; Liu Y; Li J; Zhang J; Dong W
    Colloids Surf B Biointerfaces; 2015 Jan; 125():1-11. PubMed ID: 25460596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poly(aspartic acid) based self-healing hydrogels with antibacterial and light-emitting properties for wound repair.
    Shen J; Zhou Z; Chen D; Wang Y; He Y; Wang D; Qin J
    Colloids Surf B Biointerfaces; 2021 Apr; 200():111568. PubMed ID: 33460966
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.