These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31799243)

  • 1. On the Visuomotor Behavior of Amputees and Able-Bodied People During Grasping.
    Gregori V; Cognolato M; Saetta G; Atzori M; ; Gijsberts A
    Front Bioeng Biotechnol; 2019; 7():316. PubMed ID: 31799243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving Robotic Hand Prosthesis Control With Eye Tracking and Computer Vision: A Multimodal Approach Based on the Visuomotor Behavior of Grasping.
    Cognolato M; Atzori M; Gassert R; Müller H
    Front Artif Intell; 2021; 4():744476. PubMed ID: 35146422
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaze, visual, myoelectric, and inertial data of grasps for intelligent prosthetics.
    Cognolato M; Gijsberts A; Gregori V; Saetta G; Giacomino K; Hager AM; Gigli A; Faccio D; Tiengo C; Bassetto F; Caputo B; Brugger P; Atzori M; Müller H
    Sci Data; 2020 Feb; 7(1):43. PubMed ID: 32041965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gaze, behavioral, and clinical data for phantom limbs after hand amputation from 15 amputees and 29 controls.
    Saetta G; Cognolato M; Atzori M; Faccio D; Giacomino K; Mittaz Hager AG; Tiengo C; Bassetto F; Müller H; Brugger P
    Sci Data; 2020 Feb; 7(1):60. PubMed ID: 32080198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A scoping review of eye tracking metrics used to assess visuomotor behaviours of upper limb prosthesis users.
    Cheng KY; Rehani M; Hebert JS
    J Neuroeng Rehabil; 2023 Apr; 20(1):49. PubMed ID: 37095489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaze-grasp coordination in obstacle avoidance: differences between binocular and monocular viewing.
    Grant S
    Exp Brain Res; 2015 Dec; 233(12):3489-505. PubMed ID: 26298046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visuomotor behaviours when using a myoelectric prosthesis.
    Sobuh MM; Kenney LP; Galpin AJ; Thies SB; McLaughlin J; Kulkarni J; Kyberd P
    J Neuroeng Rehabil; 2014 Apr; 11():72. PubMed ID: 24758375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gaze and Movement Assessment (GaMA): Inter-site validation of a visuomotor upper limb functional protocol.
    Williams HE; Chapman CS; Pilarski PM; Vette AH; Hebert JS
    PLoS One; 2019; 14(12):e0219333. PubMed ID: 31887218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Invasive, Temporally Discrete Feedback of Object Contact and Release Improves Grasp Control of Closed-Loop Myoelectric Transradial Prostheses.
    Clemente F; D'Alonzo M; Controzzi M; Edin BB; Cipriani C
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1314-1322. PubMed ID: 26584497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eye movements do not play an important role in the adaptation of hand tracking to a visuomotor rotation.
    Gouirand N; Mathew J; Brenner E; Danion FR
    J Neurophysiol; 2019 May; 121(5):1967-1976. PubMed ID: 30943096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anticipatory Postural Adjustments associated with reaching movements are programmed according to the availability of visual information.
    Esposti R; Bruttini C; Bolzoni F; Cavallari P
    Exp Brain Res; 2017 May; 235(5):1349-1360. PubMed ID: 28213690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anticipatory gaze strategies when grasping moving objects.
    Bulloch MC; Prime SL; Marotta JJ
    Exp Brain Res; 2015 Dec; 233(12):3413-23. PubMed ID: 26289482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gaze anchoring guides real but not pantomime reach-to-grasp: support for the action-perception theory.
    Kuntz JR; Karl JM; Doan JB; Whishaw IQ
    Exp Brain Res; 2018 Apr; 236(4):1091-1103. PubMed ID: 29441469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical areas involved in virtual movement of phantom limbs: comparison with normal subjects.
    Roux FE; Lotterie JA; Cassol E; Lazorthes Y; Sol JC; Berry I
    Neurosurgery; 2003 Dec; 53(6):1342-52; discussion 1352-3. PubMed ID: 14633300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.
    Agashe HA; Paek AY; Contreras-Vidal JL
    Prog Brain Res; 2016; 228():107-28. PubMed ID: 27590967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor control over the phantom limb in above-elbow amputees and its relationship with phantom limb pain.
    Gagné M; Reilly KT; Hétu S; Mercier C
    Neuroscience; 2009 Aug; 162(1):78-86. PubMed ID: 19406214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3-D-Gaze-Based Robotic Grasping Through Mimicking Human Visuomotor Function for People With Motion Impairments.
    Li S; Zhang X; Webb JD
    IEEE Trans Biomed Eng; 2017 Dec; 64(12):2824-2835. PubMed ID: 28278455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disentangling motor execution from motor imagery with the phantom limb.
    Raffin E; Mattout J; Reilly KT; Giraux P
    Brain; 2012 Feb; 135(Pt 2):582-95. PubMed ID: 22345089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saccadic updating of object orientation for grasping movements.
    Selen LP; Medendorp WP
    Vision Res; 2011 Apr; 51(8):898-907. PubMed ID: 21232550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.