These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31799324)

  • 1. Transcriptomic and chemogenomic analyses unveil the essential role of Com2-regulon in response and tolerance of
    Lage P; Sampaio-Marques B; Ludovico P; Mira NP; Mendes-Ferreira A
    Microb Cell; 2019 Sep; 6(11):509-523. PubMed ID: 31799324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sulfur dioxide resistance in
    García-Ríos E; Guillamón JM
    Microb Cell; 2019 Nov; 6(12):527-530. PubMed ID: 31832424
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Varela C; Bartel C; Roach M; Borneman A; Curtin C
    Appl Environ Microbiol; 2019 Feb; 85(4):. PubMed ID: 30552183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SO2 and copper tolerance exhibit an evolutionary trade-off in Saccharomyces cerevisiae.
    Onetto CA; Kutyna DR; Kolouchova R; McCarthy J; Borneman AR; Schmidt SA
    PLoS Genet; 2023 Mar; 19(3):e1010692. PubMed ID: 36976798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Increasing sulphite formation in Saccharomyces cerevisiae by overexpression of MET14 and SSU1.
    Donalies UE; Stahl U
    Yeast; 2002 Apr; 19(6):475-84. PubMed ID: 11921096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptomic and biochemical evidence for the role of lysine biosynthesis against linoleic acid hydroperoxide-induced stress in Saccharomyces cerevisiae.
    O'Doherty PJ; Lyons V; Tun NM; Rogers PJ; Bailey TD; Wu MJ
    Free Radic Res; 2014 Dec; 48(12):1454-61. PubMed ID: 25184342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotechnological Approach Based on Selected
    Capece A; Pietrafesa R; Siesto G; Romano P
    Microorganisms; 2020 May; 8(5):. PubMed ID: 32429079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome sequencing, annotation and exploration of the SO
    Tavares MJ; Güldener U; Mendes-Ferreira A; Mira NP
    BMC Genomics; 2021 Feb; 22(1):131. PubMed ID: 33622260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autophagy is required for sulfur dioxide tolerance in Saccharomyces cerevisiae.
    Valero E; Tronchoni J; Morales P; Gonzalez R
    Microb Biotechnol; 2020 Mar; 13(2):599-604. PubMed ID: 31638329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing expression of SSU1 genes in Saccharomyces uvarum leads to an increase in sulfite tolerance and a transcriptome profile change.
    Liu XZ; Sang M; Zhang XA; Zhang TK; Zhang HY; He X; Li SX; Sun XD; Zhang ZM
    FEMS Yeast Res; 2017 May; 17(3):. PubMed ID: 28449102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur dioxide addition at crush alters Saccharomyces cerevisiae strain composition in spontaneous fermentations at two Canadian wineries.
    Morgan SC; Scholl CM; Benson NL; Stone ML; Durall DM
    Int J Food Microbiol; 2017 Mar; 244():96-102. PubMed ID: 28086153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of new Saccharomyces cerevisiae variants of the MET2 and SKP2 genes controlling the sulfur assimilation pathway and the production of undesirable sulfur compounds during alcoholic fermentation.
    Noble J; Sanchez I; Blondin B
    Microb Cell Fact; 2015 May; 14():68. PubMed ID: 25947166
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different mechanisms of resistance modulate sulfite tolerance in wine yeasts.
    Nadai C; Treu L; Campanaro S; Giacomini A; Corich V
    Appl Microbiol Biotechnol; 2016 Jan; 100(2):797-813. PubMed ID: 26615396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of SSU1 multi-copy expression on Saccharomyces cerevisiae sulphite production].
    Chen Y; Shen S; Wang Y; Xiao D
    Wei Sheng Wu Xue Bao; 2008 Dec; 48(12):1609-15. PubMed ID: 19271535
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The wine yeast strain-dependent expression of genes implicated in sulfide production in response to nitrogen availability.
    Mendes-Ferreira A; Barbosa C; Jimenez-Marti E; Del Olmo ML; Mendes-Faia A
    J Microbiol Biotechnol; 2010 Sep; 20(9):1314-21. PubMed ID: 20890097
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconfiguration of Transcriptional Control of Lysine Biosynthesis in Candida albicans Involves a Central Role for the Gcn4 Transcriptional Activator.
    Priyadarshini Y; Natarajan K
    mSphere; 2016; 1(1):. PubMed ID: 27303701
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite.
    García-Ríos E; Nuévalos M; Barrio E; Puig S; Guillamón JM
    Environ Microbiol; 2019 May; 21(5):1771-1781. PubMed ID: 30859719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-wide search for candidate genes for yeast robustness improvement against formic acid reveals novel susceptibility (Trk1 and positive regulators) and resistance (Haa1-regulon) determinants.
    Henriques SF; Mira NP; Sá-Correia I
    Biotechnol Biofuels; 2017; 10():96. PubMed ID: 28428821
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Marullo P; Claisse O; Raymond Eder ML; Börlin M; Feghali N; Bernard M; Legras JL; Albertin W; Rosa AL; Masneuf-Pomarede I
    Front Microbiol; 2020; 11():1331. PubMed ID: 32695077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inactivation of MET10 in brewer's yeast specifically increases SO2 formation during beer production.
    Hansen J; Kielland-Brandt MC
    Nat Biotechnol; 1996 Nov; 14(11):1587-91. PubMed ID: 9634827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.