These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 31799520)

  • 1. The protein-water nuclear Overhauser effect (NOE) as an indirect microscope for molecular surface mapping of interaction patterns.
    Honegger P; Steinhauser O
    Phys Chem Chem Phys; 2019 Dec; 22(1):212-222. PubMed ID: 31799520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterizing Protein Hydration Dynamics Using Solution NMR Spectroscopy.
    Jorge C; Marques BS; Valentine KG; Wand AJ
    Methods Enzymol; 2019; 615():77-101. PubMed ID: 30638541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic origin of cis/trans isomers of a proline-containing beta-turn model dipeptide in aqueous solution: a combined variable temperature 1H-NMR, two-dimensional 1H,1H gradient enhanced nuclear Overhauser effect spectroscopy (NOESY), one-dimensional steady-state intermolecular 13C,1H NOE, and molecular dynamics study.
    Troganis A; Gerothanassis IP; Athanassiou Z; Mavromoustakos T; Hawkes GE; Sakarellos C
    Biopolymers; 2000 Jan; 53(1):72-83. PubMed ID: 10644952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revival of the Intermolecular Nuclear Overhauser Effect for Mapping Local Protein Hydration Dynamics.
    Braun D; Schmollngruber M; Steinhauser O
    J Phys Chem Lett; 2017 Jul; 8(14):3421-3426. PubMed ID: 28686451
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein hydration in aqueous solution.
    Wüthrich K; Otting G; Liepinsh E
    Faraday Discuss; 1992; (93):35-45. PubMed ID: 1283962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in protein hydration dynamics by encapsulation or crowding of ubiquitin: strong correlation between time-dependent Stokes shift and intermolecular nuclear Overhauser effect.
    Honegger P; Heid E; Schmode S; Schröder C; Steinhauser O
    RSC Adv; 2019 Nov; 9(63):36982-36993. PubMed ID: 35539058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of ethanol-peptide and water-peptide interactions through intermolecular nuclear overhauser effects and molecular dynamics simulations.
    Gerig JT
    J Phys Chem B; 2013 May; 117(17):4880-92. PubMed ID: 23477637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydration dynamics of proteins in reverse micelles probed by
    Honegger P; Steinhauser O
    Phys Chem Chem Phys; 2019 Jul; 21(27):14571-14582. PubMed ID: 31237595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of protein and peptide hydration.
    Modig K; Liepinsh E; Otting G; Halle B
    J Am Chem Soc; 2004 Jan; 126(1):102-14. PubMed ID: 14709075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exact distances and internal dynamics of perdeuterated ubiquitin from NOE buildups.
    Vögeli B; Segawa TF; Leitz D; Sobol A; Choutko A; Trzesniak D; van Gunsteren W; Riek R
    J Am Chem Soc; 2009 Dec; 131(47):17215-25. PubMed ID: 19891472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solute-solvent interactions probed by intermolecular NOEs.
    Gerig JT
    J Org Chem; 2003 Jun; 68(13):5244-8. PubMed ID: 12816484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How hydrophobic hydration responds to solute size and attractions: Theory and simulations.
    Athawale MV; Jamadagni SN; Garde S
    J Chem Phys; 2009 Sep; 131(11):115102. PubMed ID: 19778151
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure and solvation of melittin in 1,1,1,3,3,3-hexafluoro-2-propanol/water.
    Gerig JT
    Biophys J; 2004 May; 86(5):3166-75. PubMed ID: 15111429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure, dynamics and hydration of the nogalamycin-d(ATGCAT)2Complex determined by NMR and molecular dynamics simulations in solution.
    Williams HE; Searle MS
    J Mol Biol; 1999 Jul; 290(3):699-716. PubMed ID: 10395824
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NMR and molecular dynamics studies of the hydration of a zinc finger-DNA complex.
    Tsui V; Radhakrishnan I; Wright PE; Case DA
    J Mol Biol; 2000 Oct; 302(5):1101-17. PubMed ID: 11183777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein hydration studied with homonuclear 3D 1H NMR experiments.
    Otting G; Liepinsh E; Farmer BT; Wüthrich K
    J Biomol NMR; 1991 Jul; 1(2):209-15. PubMed ID: 1726782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity.
    Yang L; Dordick JS; Garde S
    Biophys J; 2004 Aug; 87(2):812-21. PubMed ID: 15298890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of solvent structure in proteins using neutron D2O-H2O solvent maps: pattern of primary and secondary hydration of trypsin.
    Kossiakoff AA; Sintchak MD; Shpungin J; Presta LG
    Proteins; 1992 Mar; 12(3):223-36. PubMed ID: 1557350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water molecules in DNA recognition II: a molecular dynamics view of the structure and hydration of the trp operator.
    Bonvin AM; Sunnerhagen M; Otting G; van Gunsteren WF
    J Mol Biol; 1998 Oct; 282(4):859-73. PubMed ID: 9743632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydration in discrete water (II): from neutral to charged solutes.
    Setny P
    J Phys Chem B; 2015 May; 119(19):5970-8. PubMed ID: 25896299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.