These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31799570)

  • 1. An unsymmetrical covalent organic polymer for catalytic amide synthesis.
    Yadav D; Awasthi SK
    Dalton Trans; 2020 Jan; 49(1):179-186. PubMed ID: 31799570
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Versatile Approach to Dynamic Amide Bond Formation with Imine Nucleophiles.
    Erguven H; Keyzer EN; Arndtsen BA
    Chemistry; 2020 May; 26(25):5709-5716. PubMed ID: 32155294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrogen enriched mesoporous organic polymer anchored copper(II) material: an efficient and reusable catalyst for the synthesis of esters and amides from aromatic systems.
    Molla RA; Iqubal MA; Ghosh K; Kamaluddin ; Islam SM
    Dalton Trans; 2015 Apr; 44(14):6546-59. PubMed ID: 25756757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic chemical amide synthesis at room temperature: one more step toward peptide synthesis.
    Mohy El Dine T; Erb W; Berhault Y; Rouden J; Blanchet J
    J Org Chem; 2015 May; 80(9):4532-44. PubMed ID: 25849872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Yttrium complexes supported by linked bis(amide) ligand: synthesis, structure, and catalytic activity in the ring-opening polymerization of cyclic esters.
    Mahrova TV; Fukin GK; Cherkasov AV; Trifonov AA; Ajellal N; Carpentier JF
    Inorg Chem; 2009 May; 48(9):4258-66. PubMed ID: 19391633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Free Synthesis of N-Aryl Amides using Organocatalytic Ring-Opening Aminolysis of Lactones.
    Guo W; Gómez JE; Martínez-Rodríguez L; Bandeira NAG; Bo C; Kleij AW
    ChemSusChem; 2017 May; 10(9):1969-1975. PubMed ID: 28378941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Imidazolium- and Triazine-Based Porous Organic Polymers for Heterogeneous Catalytic Conversion of CO
    Zhong H; Su Y; Chen X; Li X; Wang R
    ChemSusChem; 2017 Dec; 10(24):4855-4863. PubMed ID: 29052370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of 1,3,5-triazine-based catalytic amide-forming reactions: effect of solvents and basicity of reactants.
    Kunishima M; Kitamura M; Tanaka H; Nakakura I; Moriya T; Hioki K
    Chem Pharm Bull (Tokyo); 2013; 61(8):882-6. PubMed ID: 23902870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly diastereoselective heterogeneously catalyzed hydrogenation of enamines for the synthesis of chiral beta-amino acid derivatives.
    Ikemoto N; Tellers DM; Dreher SD; Liu J; Huang A; Rivera NR; Njolito E; Hsiao Y; McWilliams JC; Williams JM; Armstrong JD; Sun Y; Mathre DJ; Grabowski EJ; Tillyer RD
    J Am Chem Soc; 2004 Mar; 126(10):3048-9. PubMed ID: 15012124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselective synthesis of γ-tetrasubstituted nitrosulfonyl carboxylates and amides via L-tert-leucine-derived-squaramide catalyzed conjugate addition of nitrosulfones to acrylates and acrylamides.
    Bera K; Namboothiri IN
    Org Biomol Chem; 2014 Sep; 12(33):6425-31. PubMed ID: 25014471
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic synthesis of amides via aldoximes rearrangement.
    Crochet P; Cadierno V
    Chem Commun (Camb); 2015 Feb; 51(13):2495-505. PubMed ID: 25503254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenazinium salt-catalyzed aerobic oxidative amidation of aromatic aldehydes.
    Leow D
    Org Lett; 2014 Nov; 16(21):5812-5. PubMed ID: 25350690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic ester-amide exchange using group (IV) metal alkoxide-activator complexes.
    Han C; Lee JP; Lobkovsky E; Porco JA
    J Am Chem Soc; 2005 Jul; 127(28):10039-44. PubMed ID: 16011366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chiral amide directed assembly of a diastereo- and enantiopure supramolecular host and its application to enantioselective catalysis of neutral substrates.
    Zhao C; Sun QF; Hart-Cooper WM; DiPasquale AG; Toste FD; Bergman RG; Raymond KN
    J Am Chem Soc; 2013 Dec; 135(50):18802-5. PubMed ID: 24283463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Clickable coupling of carboxylic acids and amines at room temperature mediated by SO
    Wang SM; Zhao C; Zhang X; Qin HL
    Org Biomol Chem; 2019 Apr; 17(16):4087-4101. PubMed ID: 30957817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilized coupling reagents: synthesis of amides/peptides.
    Cherkupally P; Ramesh S; de la Torre BG; Govender T; Kruger HG; Albericio F
    ACS Comb Sci; 2014 Nov; 16(11):579-601. PubMed ID: 25330282
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis.
    Sole R; Gatto V; Conca S; Bardella N; Morandini A; Beghetto V
    Molecules; 2021 Jan; 26(1):. PubMed ID: 33401732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catalytic properties of carboxylic acid functionalized-polymer microsphere-stabilized gold metallic colloids.
    Liu W; Yang X; Huang W
    J Colloid Interface Sci; 2006 Dec; 304(1):160-5. PubMed ID: 17007867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A general catalytic hydroamidation of 1,3-dienes: atom-efficient synthesis of N-allyl heterocycles, amides, and sulfonamides.
    Banerjee D; Junge K; Beller M
    Angew Chem Int Ed Engl; 2014 Feb; 53(6):1630-5. PubMed ID: 24452993
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amide Bond Activation of Biological Molecules.
    Mahesh S; Tang KC; Raj M
    Molecules; 2018 Oct; 23(10):. PubMed ID: 30322008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.