BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 31799617)

  • 1. Relationship between the renin-angiotensin-aldosterone system and renal Kir5.1 channels.
    Manis AD; Palygin O; Khedr S; Levchenko V; Hodges MR; Staruschenko A
    Clin Sci (Lond); 2019 Dec; 133(24):2449-2461. PubMed ID: 31799617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Essential role of Kir5.1 channels in renal salt handling and blood pressure control.
    Palygin O; Levchenko V; Ilatovskaya DV; Pavlov TS; Pochynyuk OM; Jacob HJ; Geurts AM; Hodges MR; Staruschenko A
    JCI Insight; 2017 Sep; 2(18):. PubMed ID: 28931751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inwardly rectifying K
    Wang WH; Lin DH
    Am J Physiol Cell Physiol; 2022 Aug; 323(2):C277-C288. PubMed ID: 35759440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kcnj16 knockout produces audiogenic seizures in the Dahl salt-sensitive rat.
    Manis AD; Palygin O; Isaeva E; Levchenko V; LaViolette PS; Pavlov TS; Hodges MR; Staruschenko A
    JCI Insight; 2021 Jan; 6(1):. PubMed ID: 33232300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of inwardly rectifying K+ channel 5.1 (Kir5.1) in the regulation of renal membrane transport.
    Lin DH; Duan XP; Zheng JY; Wang WH
    Curr Opin Nephrol Hypertens; 2022 Sep; 31(5):479-485. PubMed ID: 35894283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dietary salt modifies the blood pressure response to renin-angiotensin inhibition in experimental chronic kidney disease.
    Bovée DM; Uijl E; Severs D; Rubio-Beltrán E; van Veghel R; Maassen van den Brink A; Joles JA; Zietse R; Cuevas CA; Danser AHJ; Hoorn EJ
    Am J Physiol Renal Physiol; 2021 Apr; 320(4):F654-F668. PubMed ID: 33586496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distal tubule basolateral potassium channels: cellular and molecular mechanisms of regulation.
    Palygin O; Pochynyuk O; Staruschenko A
    Curr Opin Nephrol Hypertens; 2018 Sep; 27(5):373-378. PubMed ID: 29894319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deletion of renal Nedd4-2 abolishes the effect of high sodium intake (HS) on Kir4.1, ENaC, and NCC and causes hypokalemia during high HS.
    Zhang DD; Duan XP; Xiao Y; Wu P; Gao ZX; Wang WH; Lin DH
    Am J Physiol Renal Physiol; 2021 May; 320(5):F883-F896. PubMed ID: 33818128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deletion of Kir5.1 abolishes the effect of high Na
    Duan XP; Wu P; Zhang DD; Gao ZX; Xiao Y; Ray EC; Wang WH; Lin DH
    Am J Physiol Renal Physiol; 2021 Jun; 320(6):F1045-F1058. PubMed ID: 33900854
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of Kir5.1 Impairs Renal Ability to Excrete Potassium during Increased Dietary Potassium Intake.
    Wu P; Gao ZX; Zhang DD; Su XT; Wang WH; Lin DH
    J Am Soc Nephrol; 2019 Aug; 30(8):1425-1438. PubMed ID: 31239388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal phenotype in mice lacking the Kir5.1 (Kcnj16) K+ channel subunit contrasts with that observed in SeSAME/EAST syndrome.
    Paulais M; Bloch-Faure M; Picard N; Jacques T; Ramakrishnan SK; Keck M; Sohet F; Eladari D; Houillier P; Lourdel S; Teulon J; Tucker SJ
    Proc Natl Acad Sci U S A; 2011 Jun; 108(25):10361-6. PubMed ID: 21633011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic mutation of Kcnj16 identifies Kir5.1-containing channels as key regulators of acute and chronic pH homeostasis.
    Puissant MM; Muere C; Levchenko V; Manis AD; Martino P; Forster HV; Palygin O; Staruschenko A; Hodges MR
    FASEB J; 2019 Apr; 33(4):5067-5075. PubMed ID: 30605394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kir4.1/Kir5.1 Activity Is Essential for Dietary Sodium Intake-Induced Modulation of Na-Cl Cotransporter.
    Wu P; Gao ZX; Su XT; Wang MX; Wang WH; Lin DH
    J Am Soc Nephrol; 2019 Feb; 30(2):216-227. PubMed ID: 30559144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deletion of renal Nedd4-2 abolishes the effect of high K
    Xiao Y; Duan XP; Zhang DD; Wang WH; Lin DH
    Am J Physiol Renal Physiol; 2021 Jul; 321(1):F1-F11. PubMed ID: 34029145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of mineralocorticoid receptor blockade on the renal renin-angiotensin system in Dahl salt-sensitive hypertensive rats.
    Zhu A; Yoneda T; Demura M; Karashima S; Usukura M; Yamagishi M; Takeda Y
    J Hypertens; 2009 Apr; 27(4):800-5. PubMed ID: 19516179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Angiotensin II Type 1a Receptor (AT1aR) of Renal Tubules in Regulating Inwardly Rectifying Potassium Channels 4.2 (Kir4.2), Kir4.1, and Epithelial Na
    Duan XP; Xiao Y; Su XT; Zheng JY; Gurley S; Emathinger J; Yang CL; McCormick J; Ellison DH; Lin DH; Wang WH
    Hypertension; 2024 Jan; 81(1):126-137. PubMed ID: 37909221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (Pro)Renin receptor regulates potassium homeostasis through a local mechanism.
    Xu C; Lu A; Wang H; Fang H; Zhou L; Sun P; Yang T
    Am J Physiol Renal Physiol; 2017 Sep; 313(3):F641-F656. PubMed ID: 27440776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. K
    Zietara A; Palygin O; Levchenko V; Dissanayake LV; Klemens CA; Geurts A; Denton JS; Staruschenko A
    Am J Physiol Renal Physiol; 2023 Aug; 325(2):F177-F187. PubMed ID: 37318990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SGLT2 inhibition effect on salt-induced hypertension, RAAS, and Na
    Kravtsova O; Bohovyk R; Levchenko V; Palygin O; Klemens CA; Rieg T; Staruschenko A
    Am J Physiol Renal Physiol; 2022 Jun; 322(6):F692-F707. PubMed ID: 35466690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of collecting duct principal cell NOS1β in sodium and potassium homeostasis.
    Hyndman KA; Isaeva E; Palygin O; Mendoza LD; Rodan AR; Staruschenko A; Pollock JS
    Physiol Rep; 2021 Oct; 9(20):e15080. PubMed ID: 34665521
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.