BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31800120)

  • 1. The measurement of KRAS G12 mutants using multiplexed selected reaction monitoring and ion mobility mass spectrometry.
    Norman RL; Singh R; Langridge JI; Ng LL; Jones DJL
    Rapid Commun Mass Spectrom; 2020 Sep; 34 Suppl 4(Suppl 4):e8657. PubMed ID: 31800120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of collision cross section values obtained via travelling wave ion mobility-mass spectrometry and ultra high performance liquid chromatography-ion mobility-mass spectrometry: Application to the characterisation of metabolites in rat urine.
    Nye LC; Williams JP; Munjoma NC; Letertre MPM; Coen M; Bouwmeester R; Martens L; Swann JR; Nicholson JK; Plumb RS; McCullagh M; Gethings LA; Lai S; Langridge JI; Vissers JPC; Wilson ID
    J Chromatogr A; 2019 Sep; 1602():386-396. PubMed ID: 31285057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion mobility-high resolution mass spectrometry in anti-doping analysis. Part I: Implementation of a screening method with the assessment of a library of substances prohibited in sports.
    Plachká K; Pezzatti J; Musenga A; Nicoli R; Kuuranne T; Rudaz S; Nováková L; Guillarme D
    Anal Chim Acta; 2021 Apr; 1152():338257. PubMed ID: 33648637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of selected reaction monitoring peptide transitions via multiplexed product-ion scan modes.
    Cho BK; Koo YD; Kim K; Kang MJ; Lee YY; Kim Y; Park KS; Kim KP; Yi EC
    Rapid Commun Mass Spectrom; 2014 Apr; 28(7):773-80. PubMed ID: 24573808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of very low-molecular weight metabolites by traveling wave ion mobility and its use in human urine samples.
    Kurilung A; Limjiasahapong S; Kaewnarin K; Wisanpitayakorn P; Jariyasopit N; Wanichthanarak K; Sartyoungkul S; Wong SCC; Sathirapongsasuti N; Kitiyakara C; Sirivatanauksorn Y; Khoomrung S
    J Pharm Anal; 2024 May; 14(5):100921. PubMed ID: 38799238
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical evaluation of the role of external calibration strategies for IM-MS.
    Feuerstein ML; Hernández-Mesa M; Valadbeigi Y; Le Bizec B; Hann S; Dervilly G; Causon T
    Anal Bioanal Chem; 2022 Oct; 414(25):7483-7493. PubMed ID: 35960317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of the collision cross sections of cardiolipins and phospholipids from Pseudomonas aeruginosa by traveling wave ion mobility spectrometry-mass spectrometry using a novel correction strategy.
    Deschamps E; Schmitz-Afonso I; Schaumann A; Dé E; Loutelier-Bourhis C; Alexandre S; Afonso C
    Anal Bioanal Chem; 2019 Dec; 411(30):8123-8131. PubMed ID: 31754767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening of synthetic PDE-5 inhibitors and their analogues as adulterants: analytical techniques and challenges.
    Patel DN; Li L; Kee CL; Ge X; Low MY; Koh HL
    J Pharm Biomed Anal; 2014 Jan; 87():176-90. PubMed ID: 23721687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementing the Use of Collision Cross Section Database for Phycotoxin Screening Analysis.
    Aparicio-Muriana MM; Bruni R; Lara FJ; Del Olmo-Iruela M; Hernandez-Mesa M; García-Campaña AM; Dall'Asta C; Righetti L
    J Agric Food Chem; 2023 Jul; 71(26):10178-10189. PubMed ID: 37347990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Peptides quantification by liquid chromatography with matrix-assisted laser desorption/ionization and selected reaction monitoring detection.
    Lesur A; Varesio E; Domon B; Hopfgartner G
    J Proteome Res; 2012 Oct; 11(10):4972-82. PubMed ID: 22897511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Immunoaffinity microflow liquid chromatography/tandem mass spectrometry for the quantitation of PD1 and PD-L1 in human tumor tissues.
    Zhu Y; Zalaznick J; Sleczka B; Parrish K; Yang Z; Olah T; Shipkova P
    Rapid Commun Mass Spectrom; 2020 Oct; 34(20):e8896. PubMed ID: 32666620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison between liquid chromatography-time of-flight mass spectrometry and selected reaction monitoring liquid chromatography-mass spectrometry for quantitative determination of idoxifene in human plasma.
    Zhang H; Henion J
    J Chromatogr B Biomed Sci Appl; 2001 Jun; 757(1):151-9. PubMed ID: 11419740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of TATP gas phase product ion chemistry via isotope labeling experiments using ion mobility spectrometry interfaced with a triple quadrupole mass spectrometer.
    Tomlinson-Phillips J; Wooten A; Kozole J; Deline J; Beresford P; Stairs J
    Talanta; 2014 Sep; 127():152-62. PubMed ID: 24913870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantification of proteins using peptide immunoaffinity enrichment coupled with mass spectrometry.
    Zhao L; Whiteaker JR; Pope ME; Kuhn E; Jackson A; Anderson NL; Pearson TW; Carr SA; Paulovich AG
    J Vis Exp; 2011 Jul; (53):. PubMed ID: 21841765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lipid analysis by ion mobility spectrometry combined with mass spectrometry: A brief update with a perspective on applications in the clinical laboratory.
    Dubland JA
    J Mass Spectrom Adv Clin Lab; 2022 Jan; 23():7-13. PubMed ID: 34988541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility-mass spectrometry.
    Causon TJ; Hann S
    J Chromatogr A; 2015 Oct; 1416():47-56. PubMed ID: 26372446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Comprehensive UHPLC Ion Mobility Quadrupole Time-of-Flight Method for Profiling and Quantification of Eicosanoids, Other Oxylipins, and Fatty Acids.
    Hinz C; Liggi S; Mocciaro G; Jung S; Induruwa I; Pereira M; Bryant CE; Meckelmann SW; O'Donnell VB; Farndale RW; Fjeldsted J; Griffin JL
    Anal Chem; 2019 Jul; 91(13):8025-8035. PubMed ID: 31074960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards the use of ion mobility mass spectrometry derived collision cross section as a screening approach for unambiguous identification of targeted pesticides in food.
    Goscinny S; McCullagh M; Far J; De Pauw E; Eppe G
    Rapid Commun Mass Spectrom; 2019 Jul; 33 Suppl 2():34-48. PubMed ID: 30677180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput screening and quantitation of guanidino and ureido compounds using liquid chromatography-drift tube ion mobility spectrometry-mass spectrometry.
    Fan RJ; Zhang F; Chen XP; Qi WS; Guan Q; Sun TQ; Guo YL
    Anal Chim Acta; 2017 Apr; 961():82-90. PubMed ID: 28224912
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of measured relative shifts in collision cross section values for biotransformation studies.
    Lanshoeft C; Schütz R; Lozac'h F; Schlotterbeck G; Walles M
    Anal Bioanal Chem; 2024 Jan; 416(2):559-568. PubMed ID: 38040943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.