BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

512 related articles for article (PubMed ID: 31800601)

  • 1. Machine learning approach to single nucleotide polymorphism-based asthma prediction.
    Gaudillo J; Rodriguez JJR; Nazareno A; Baltazar LR; Vilela J; Bulalacao R; Domingo M; Albia J
    PLoS One; 2019; 14(12):e0225574. PubMed ID: 31800601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A machine-learning approach for nonalcoholic steatohepatitis susceptibility estimation.
    Ghadiri F; Husseini AA; Öztaş O
    Indian J Gastroenterol; 2022 Oct; 41(5):475-482. PubMed ID: 36367682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data.
    Zhang Y; Deng Q; Liang W; Zou X
    Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree.
    Li K; Shi Q; Liu S; Xie Y; Liu J
    Medicine (Baltimore); 2021 May; 100(19):e25813. PubMed ID: 34106618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single Nucleotide Polymorphism relevance learning with Random Forests for Type 2 diabetes risk prediction.
    López B; Torrent-Fontbona F; Viñas R; Fernández-Real JM
    Artif Intell Med; 2018 Apr; 85():43-49. PubMed ID: 28943335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of ischemic stroke diagnosis models based on machine learning.
    Yang WX; Wang FF; Pan YY; Xie JQ; Lu MH; You CG
    Front Neurol; 2022; 13():1014346. PubMed ID: 36545400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide association data classification and SNPs selection using two-stage quality-based Random Forests.
    Nguyen TT; Huang J; Wu Q; Nguyen T; Li M
    BMC Genomics; 2015; 16 Suppl 2(Suppl 2):S5. PubMed ID: 25708662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Raman spectroscopy combined with machine learning algorithms for rapid detection Primary Sjögren's syndrome associated with interstitial lung disease.
    Wu X; Chen C; Chen X; Luo C; Lv X; Shi Y; Yang J; Meng X; Chen C; Su J; Wu L
    Photodiagnosis Photodyn Ther; 2022 Dec; 40():103057. PubMed ID: 35944848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning-Based Method for Obesity Risk Evaluation Using Single-Nucleotide Polymorphisms Derived from Next-Generation Sequencing.
    Wang HY; Chang SC; Lin WY; Chen CH; Chiang SH; Huang KY; Chu BY; Lu JJ; Lee TY
    J Comput Biol; 2018 Dec; 25(12):1347-1360. PubMed ID: 30204480
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting Inhibitors for Multidrug Resistance Associated Protein-2 Transporter by Machine Learning Approach.
    Kharangarh S; Sandhu H; Tangadpalliwar S; Garg P
    Comb Chem High Throughput Screen; 2018; 21(8):557-566. PubMed ID: 30360705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of Radiomic Models Based on Different Machine Learning Methods for Predicting Intracerebral Hemorrhage Expansion.
    Duan C; Liu F; Gao S; Zhao J; Niu L; Li N; Liu S; Wang G; Zhou X; Ren Y; Xu W; Liu X
    Clin Neuroradiol; 2022 Mar; 32(1):215-223. PubMed ID: 34156513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Risk score prediction model based on single nucleotide polymorphism for predicting malaria: a machine learning approach.
    Tai KY; Dhaliwal J; Wong K
    BMC Bioinformatics; 2022 Aug; 23(1):325. PubMed ID: 35934714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison and development of machine learning tools for the prediction of chronic obstructive pulmonary disease in the Chinese population.
    Ma X; Wu Y; Zhang L; Yuan W; Yan L; Fan S; Lian Y; Zhu X; Gao J; Zhao J; Zhang P; Tang H; Jia W
    J Transl Med; 2020 Mar; 18(1):146. PubMed ID: 32234053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of Machine Learning Models for Prediction of Smoking Cessation Outcome.
    Lai CC; Huang WH; Chang BC; Hwang LC
    Int J Environ Res Public Health; 2021 Mar; 18(5):. PubMed ID: 33807561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification.
    Lee HS; Hong H; Jung DC; Park S; Kim J
    Med Phys; 2017 Jul; 44(7):3604-3614. PubMed ID: 28376281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and Validation of a Magnetic Resonance Imaging-Based Machine Learning Model for TMJ Pathologies.
    Orhan K; Driesen L; Shujaat S; Jacobs R; Chai X
    Biomed Res Int; 2021; 2021():6656773. PubMed ID: 34327235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting in-hospital mortality of patients with acute kidney injury in the ICU using random forest model.
    Lin K; Hu Y; Kong G
    Int J Med Inform; 2019 May; 125():55-61. PubMed ID: 30914181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and rigorous validation of antimalarial predictive models using machine learning approaches.
    Danishuddin ; Madhukar G; Malik MZ; Subbarao N
    SAR QSAR Environ Res; 2019 Aug; 30(8):543-560. PubMed ID: 31328578
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study on feature selection for a risk prediction model for colorectal cancer.
    Cueto-López N; García-Ordás MT; Dávila-Batista V; Moreno V; Aragonés N; Alaiz-Rodríguez R
    Comput Methods Programs Biomed; 2019 Aug; 177():219-229. PubMed ID: 31319951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recursive Support Vector Machine Biomarker Selection for Alzheimer's Disease.
    Zhang F; Petersen M; Johnson L; Hall J; O'Bryant SE
    J Alzheimers Dis; 2021; 79(4):1691-1700. PubMed ID: 33492292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.