Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 31801265)

  • 1. Development of a Microfluidic Array to Study Drug Response in Breast Cancer.
    Virumbrales-Muñoz M; Livingston MK; Farooqui M; Skala MC; Beebe DJ; Ayuso JM
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31801265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Screening of Anti-cancer Drugs Using a Microfluidic Spheroid Culture Device with a Concentration Gradient Generator.
    Lee Y; Chen Z; Lim W; Cho H; Park S
    Curr Protoc; 2022 Sep; 2(9):e529. PubMed ID: 36066205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic cell culture array with various oxygen tensions.
    Peng CC; Liao WH; Chen YH; Wu CY; Tung YC
    Lab Chip; 2013 Aug; 13(16):3239-45. PubMed ID: 23784347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices.
    Akther F; Yakob SB; Nguyen NT; Ta HT
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33228050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polydimethylsiloxane SlipChip for mammalian cell culture applications.
    Chang CW; Peng CC; Liao WH; Tung YC
    Analyst; 2015 Nov; 140(21):7355-65. PubMed ID: 26381390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell-Based Assays on Microfluidics for Drug Screening.
    Liu X; Zheng W; Jiang X
    ACS Sens; 2019 Jun; 4(6):1465-1475. PubMed ID: 31074263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The revolution of PDMS microfluidics in cellular biology.
    Banik S; Uchil A; Kalsang T; Chakrabarty S; Ali MA; Srisungsitthisunti P; Mahato KK; Surdo S; Mazumder N
    Crit Rev Biotechnol; 2023 May; 43(3):465-483. PubMed ID: 35410564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different in vitro cellular responses to tamoxifen treatment in polydimethylsiloxane-based devices compared to normal cell culture.
    Wang L; Yu L; Grist S; Cheung KC; Chen DDY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Nov; 1068-1069():105-111. PubMed ID: 29073477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal circuits on a chip for biological network monitoring.
    Herreros P; Ballesteros-Esteban LM; Laguna MF; Leyva I; Sendiña-Nadal I; Holgado M
    Biotechnol J; 2021 Jul; 16(7):e2000355. PubMed ID: 33984186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput injection molded microfluidic device for single-cell analysis of spatiotemporal dynamics.
    Kim Y; Song J; Lee Y; Cho S; Kim S; Lee SR; Park S; Shin Y; Jeon NL
    Lab Chip; 2021 Aug; 21(16):3150-3158. PubMed ID: 34180916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering tumor vasculature on an injection-molded plastic array 3D culture (IMPACT) platform.
    Lee S; Lim J; Yu J; Ahn J; Lee Y; Jeon NL
    Lab Chip; 2019 Jun; 19(12):2071-2080. PubMed ID: 31049508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Static Molecular Gradients in a High-Throughput Drug Screening Microfluidic Assay.
    Szafran RG; Wiatrak B
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. THz Spectroscopy for a Rapid and Label-Free Cell Viability Assay in a Microfluidic Chip Based on an Optical Clearing Agent.
    Yang K; Yang X; Zhao X; Lamy de la Chapelle M; Fu W
    Anal Chem; 2019 Jan; 91(1):785-791. PubMed ID: 30335363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drug screening of cancer cell lines and human primary tumors using droplet microfluidics.
    Wong AH; Li H; Jia Y; Mak PI; Martins RPDS; Liu Y; Vong CM; Wong HC; Wong PK; Wang H; Sun H; Deng CX
    Sci Rep; 2017 Aug; 7(1):9109. PubMed ID: 28831060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform.
    Liu W; Xu J; Li T; Zhao L; Ma C; Shen S; Wang J
    Anal Chem; 2015 Oct; 87(19):9752-60. PubMed ID: 26337449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.
    Halldorsson S; Lucumi E; Gómez-Sjöberg R; Fleming RMT
    Biosens Bioelectron; 2015 Jan; 63():218-231. PubMed ID: 25105943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The microfluidic capture of single breast cancer cells for multi-drug resistance assays.
    Parekh K; Sharifi H; Khamenehfar A; Beischlag TV; Payer RTM; Li PCH
    Methods Enzymol; 2019; 628():113-127. PubMed ID: 31668225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning unlocks label-free viability assessment of cancer spheroids in microfluidics.
    Chiang CC; Anne R; Chawla P; Shaw RM; He S; Rock EC; Zhou M; Cheng J; Gong YN; Chen YC
    Lab Chip; 2024 Jun; 24(12):3169-3182. PubMed ID: 38804084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.