These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 31801265)

  • 1. Development of a Microfluidic Array to Study Drug Response in Breast Cancer.
    Virumbrales-Muñoz M; Livingston MK; Farooqui M; Skala MC; Beebe DJ; Ayuso JM
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31801265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Screening of Anti-cancer Drugs Using a Microfluidic Spheroid Culture Device with a Concentration Gradient Generator.
    Lee Y; Chen Z; Lim W; Cho H; Park S
    Curr Protoc; 2022 Sep; 2(9):e529. PubMed ID: 36066205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic cell culture array with various oxygen tensions.
    Peng CC; Liao WH; Chen YH; Wu CY; Tung YC
    Lab Chip; 2013 Aug; 13(16):3239-45. PubMed ID: 23784347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Modification Techniques for Endothelial Cell Seeding in PDMS Microfluidic Devices.
    Akther F; Yakob SB; Nguyen NT; Ta HT
    Biosensors (Basel); 2020 Nov; 10(11):. PubMed ID: 33228050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polydimethylsiloxane SlipChip for mammalian cell culture applications.
    Chang CW; Peng CC; Liao WH; Tung YC
    Analyst; 2015 Nov; 140(21):7355-65. PubMed ID: 26381390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From Chips-in-Lab to Point-of-Care Live Cell Device: Development of a Microfluidic Device for On-Site Cell Culture and High-Throughput Drug Screening.
    Feng Y; Che B; Fu J; Sun Y; Ma W; Tian J; Dai L; Jing G; Zhao W; Sun D; Zhang C
    ACS Biomater Sci Eng; 2024 Aug; 10(8):5399-5408. PubMed ID: 39031055
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-Based Assays on Microfluidics for Drug Screening.
    Liu X; Zheng W; Jiang X
    ACS Sens; 2019 Jun; 4(6):1465-1475. PubMed ID: 31074263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The revolution of PDMS microfluidics in cellular biology.
    Banik S; Uchil A; Kalsang T; Chakrabarty S; Ali MA; Srisungsitthisunti P; Mahato KK; Surdo S; Mazumder N
    Crit Rev Biotechnol; 2023 May; 43(3):465-483. PubMed ID: 35410564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different in vitro cellular responses to tamoxifen treatment in polydimethylsiloxane-based devices compared to normal cell culture.
    Wang L; Yu L; Grist S; Cheung KC; Chen DDY
    J Chromatogr B Analyt Technol Biomed Life Sci; 2017 Nov; 1068-1069():105-111. PubMed ID: 29073477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuronal circuits on a chip for biological network monitoring.
    Herreros P; Ballesteros-Esteban LM; Laguna MF; Leyva I; Sendiña-Nadal I; Holgado M
    Biotechnol J; 2021 Jul; 16(7):e2000355. PubMed ID: 33984186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-throughput injection molded microfluidic device for single-cell analysis of spatiotemporal dynamics.
    Kim Y; Song J; Lee Y; Cho S; Kim S; Lee SR; Park S; Shin Y; Jeon NL
    Lab Chip; 2021 Aug; 21(16):3150-3158. PubMed ID: 34180916
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering tumor vasculature on an injection-molded plastic array 3D culture (IMPACT) platform.
    Lee S; Lim J; Yu J; Ahn J; Lee Y; Jeon NL
    Lab Chip; 2019 Jun; 19(12):2071-2080. PubMed ID: 31049508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of Static Molecular Gradients in a High-Throughput Drug Screening Microfluidic Assay.
    Szafran RG; Wiatrak B
    Molecules; 2021 Oct; 26(21):. PubMed ID: 34770793
    [TBL] [Abstract][Full Text] [Related]  

  • 16. THz Spectroscopy for a Rapid and Label-Free Cell Viability Assay in a Microfluidic Chip Based on an Optical Clearing Agent.
    Yang K; Yang X; Zhao X; Lamy de la Chapelle M; Fu W
    Anal Chem; 2019 Jan; 91(1):785-791. PubMed ID: 30335363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug screening of cancer cell lines and human primary tumors using droplet microfluidics.
    Wong AH; Li H; Jia Y; Mak PI; Martins RPDS; Liu Y; Vong CM; Wong HC; Wong PK; Wang H; Sun H; Deng CX
    Sci Rep; 2017 Aug; 7(1):9109. PubMed ID: 28831060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform.
    Liu W; Xu J; Li T; Zhao L; Ma C; Shen S; Wang J
    Anal Chem; 2015 Oct; 87(19):9752-60. PubMed ID: 26337449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.
    Halldorsson S; Lucumi E; Gómez-Sjöberg R; Fleming RMT
    Biosens Bioelectron; 2015 Jan; 63():218-231. PubMed ID: 25105943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The microfluidic capture of single breast cancer cells for multi-drug resistance assays.
    Parekh K; Sharifi H; Khamenehfar A; Beischlag TV; Payer RTM; Li PCH
    Methods Enzymol; 2019; 628():113-127. PubMed ID: 31668225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.