These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

389 related articles for article (PubMed ID: 31801265)

  • 21. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.
    Halldorsson S; Lucumi E; Gómez-Sjöberg R; Fleming RMT
    Biosens Bioelectron; 2015 Jan; 63():218-231. PubMed ID: 25105943
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The microfluidic capture of single breast cancer cells for multi-drug resistance assays.
    Parekh K; Sharifi H; Khamenehfar A; Beischlag TV; Payer RTM; Li PCH
    Methods Enzymol; 2019; 628():113-127. PubMed ID: 31668225
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Viable cell culture in PDMS-based microfluidic devices.
    Tanyeri M; Tay S
    Methods Cell Biol; 2018; 148():3-33. PubMed ID: 30473072
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Novel Wick-Like Paper-Based Microfluidic Device for 3D Cell Culture and Anti-Cancer Drugs Screening.
    Fu SX; Zuo P; Ye BC
    Biotechnol J; 2021 Feb; 16(2):e2000126. PubMed ID: 33460221
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional culture models to study drug resistance in breast cancer.
    Fisher MF; Rao SS
    Biotechnol Bioeng; 2020 Jul; 117(7):2262-2278. PubMed ID: 32297971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recent innovations in cost-effective polymer and paper hybrid microfluidic devices.
    Zhou W; Dou M; Timilsina SS; Xu F; Li X
    Lab Chip; 2021 Jul; 21(14):2658-2683. PubMed ID: 34180494
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices.
    Lim H; Jafry AT; Lee J
    Molecules; 2019 Aug; 24(16):. PubMed ID: 31394856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microfluidics within a well: an injection-molded plastic array 3D culture platform.
    Lee Y; Choi JW; Yu J; Park D; Ha J; Son K; Lee S; Chung M; Kim HY; Jeon NL
    Lab Chip; 2018 Aug; 18(16):2433-2440. PubMed ID: 29999064
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Versatile membrane-based microfluidic platform for in vitro drug diffusion testing mimicking in vivo environments.
    Mitxelena-Iribarren O; Olaizola C; Arana S; Mujika M
    Nanomedicine; 2022 Jan; 39():102462. PubMed ID: 34592426
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Membrane integration into PDMS-free microfluidic platforms for organ-on-chip and analytical chemistry applications.
    Schneider S; Gruner D; Richter A; Loskill P
    Lab Chip; 2021 May; 21(10):1866-1885. PubMed ID: 33949565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design considerations to minimize the impact of drug absorption in polymer-based organ-on-a-chip platforms.
    Shirure VS; George SC
    Lab Chip; 2017 Feb; 17(4):681-690. PubMed ID: 28102869
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The analytical approach to polydimethylsiloxane microfluidic technology and its biological applications.
    Kartalov EP; Anderson WF; Scherer A
    J Nanosci Nanotechnol; 2006 Aug; 6(8):2265-77. PubMed ID: 17037833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An Integrated Microfluidics Approach for Personalized Cancer Drug Sensitivity and Resistance Assay.
    Desyatnik I; Krasner M; Frolov L; Ronen M; Guy O; Wasserman D; Tzur A; Avrahami D; Barbiro-Michaely E; Gerber D
    Adv Biosyst; 2019 Nov; 3(11):e1900001. PubMed ID: 32648689
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Design and validation of a flowless gradient generating microfluidic device for high-throughput drug testing.
    Bachal K; Yadav S; Gandhi P; Majumder A
    Lab Chip; 2023 Jan; 23(2):261-271. PubMed ID: 36475525
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices.
    Shakeri A; Khan S; Didar TF
    Lab Chip; 2021 Aug; 21(16):3053-3075. PubMed ID: 34286800
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of disposable PDMS micro cell culture analog devices with photopolymerizable hydrogel encapsulating living cells.
    Xu H; Wu J; Chu CC; Shuler ML
    Biomed Microdevices; 2012 Apr; 14(2):409-18. PubMed ID: 22160484
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polydimethylsiloxane-polycarbonate Microfluidic Devices for Cell Migration Studies Under Perpendicular Chemical and Oxygen Gradients.
    Chiang HJ; Yeh SL; Peng CC; Liao WH; Tung YC
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287582
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Microfluidic cell culture array chip for drug screening assays].
    Zheng Y; Wu J; Shao J; Jin Q; Zhao J
    Sheng Wu Gong Cheng Xue Bao; 2009 May; 25(5):779-85. PubMed ID: 19670650
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.