These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31801606)

  • 1. Afann: bias adjustment for alignment-free sequence comparison based on sequencing data using neural network regression.
    Tang K; Ren J; Sun F
    Genome Biol; 2019 Dec; 20(1):266. PubMed ID: 31801606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CAFE: aCcelerated Alignment-FrEe sequence analysis.
    Lu YY; Tang K; Ren J; Fuhrman JA; Waterman MS; Sun F
    Nucleic Acids Res; 2017 Jul; 45(W1):W554-W559. PubMed ID: 28472388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast adaptive algorithm for computing whole-genome homology maps.
    Jain C; Koren S; Dilthey A; Phillippy AM; Aluru S
    Bioinformatics; 2018 Sep; 34(17):i748-i756. PubMed ID: 30423094
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New developments of alignment-free sequence comparison: measures, statistics and next-generation sequencing.
    Song K; Ren J; Reinert G; Deng M; Waterman MS; Sun F
    Brief Bioinform; 2014 May; 15(3):343-53. PubMed ID: 24064230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NeatFreq: reference-free data reduction and coverage normalization for De Novo sequence assembly.
    McCorrison JM; Venepally P; Singh I; Fouts DE; Lasken RS; Methé BA
    BMC Bioinformatics; 2014 Nov; 15(1):357. PubMed ID: 25407910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient DNA sequence compression with neural networks.
    Silva M; Pratas D; Pinho AJ
    Gigascience; 2020 Nov; 9(11):. PubMed ID: 33179040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ARKS: chromosome-scale scaffolding of human genome drafts with linked read kmers.
    Coombe L; Zhang J; Vandervalk BP; Chu J; Jackman SD; Birol I; Warren RL
    BMC Bioinformatics; 2018 Jun; 19(1):234. PubMed ID: 29925315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SparkBWA: Speeding Up the Alignment of High-Throughput DNA Sequencing Data.
    Abuín JM; Pichel JC; Pena TF; Amigo J
    PLoS One; 2016; 11(5):e0155461. PubMed ID: 27182962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepHost: phage host prediction with convolutional neural network.
    Ruohan W; Xianglilan Z; Jianping W; Shuai Cheng LI
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34553750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of metagenomic samples using sequence signatures.
    Jiang B; Song K; Ren J; Deng M; Sun F; Zhang X
    BMC Genomics; 2012 Dec; 13():730. PubMed ID: 23268604
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short read alignment with populations of genomes.
    Huang L; Popic V; Batzoglou S
    Bioinformatics; 2013 Jul; 29(13):i361-70. PubMed ID: 23813006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly-free genome comparison based on next-generation sequencing reads and variable length patterns.
    Comin M; Schimd M
    BMC Bioinformatics; 2014; 15 Suppl 9(Suppl 9):S1. PubMed ID: 25252700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRAFT: Compact genome Representation toward large-scale Alignment-Free daTabase.
    Lu YY; Bai J; Wang Y; Wang Y; Sun F
    Bioinformatics; 2021 Apr; 37(2):155-161. PubMed ID: 32766810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Athena: Automated Tuning of k-mer based Genomic Error Correction Algorithms using Language Models.
    Abdallah M; Mahgoub A; Ahmed H; Chaterji S
    Sci Rep; 2019 Nov; 9(1):16157. PubMed ID: 31695060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ViralConsensus: a fast and memory-efficient tool for calling viral consensus genome sequences directly from read alignment data.
    Moshiri N
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37171896
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Centroid based clustering of high throughput sequencing reads based on n-mer counts.
    Solovyov A; Lipkin WI
    BMC Bioinformatics; 2013 Sep; 14():268. PubMed ID: 24011402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing performance of GATK workflows using Apache Arrow In-Memory data framework.
    Ahmad T; Ahmed N; Al-Ars Z; Hofstee HP
    BMC Genomics; 2020 Nov; 21(Suppl 10):683. PubMed ID: 33208101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inference of Markovian properties of molecular sequences from NGS data and applications to comparative genomics.
    Ren J; Song K; Deng M; Reinert G; Cannon CH; Sun F
    Bioinformatics; 2016 Apr; 32(7):993-1000. PubMed ID: 26130573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-DAV: CRISPR NGS data analysis and visualization pipeline.
    Wang X; Tilford C; Neuhaus I; Mintier G; Guo Q; Feder JN; Kirov S
    Bioinformatics; 2017 Dec; 33(23):3811-3812. PubMed ID: 28961906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable De Novo Genome Assembly Using a Pregel-Like Graph-Parallel System.
    Guo G; Chen H; Yan D; Cheng J; Chen JY; Chong Z
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(2):731-744. PubMed ID: 31180898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.