BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31802092)

  • 1. Modular within and between score for drug response prediction in cancer cell lines.
    Wang S; Li J
    Mol Omics; 2020 Feb; 16(1):31-38. PubMed ID: 31802092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WMMDCA: Prediction of Drug Responses by Weight-Based Modular Mapping in Cancer Cell Lines.
    Wang S; Li J; Wang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2733-2740. PubMed ID: 32142453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MSDRP: a deep learning model based on multisource data for predicting drug response.
    Zhao H; Zhang X; Zhao Q; Li Y; Wang J
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37606993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pan-Cancer Prediction of Cell-Line Drug Sensitivity Using Network-Based Methods.
    Pouryahya M; Oh JH; Mathews JC; Belkhatir Z; Moosmüller C; Deasy JO; Tannenbaum AR
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating constitutive gene expression and chemoactivity: mining the NCI60 anticancer screen.
    Covell DG
    PLoS One; 2012; 7(10):e44631. PubMed ID: 23056181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multiple genomic data fused SF2 prediction model, signature identification, and gene regulatory network inference for personalized radiotherapy.
    He QE; Tong YF; Ye Z; Gao LX; Zhang YZ; Wang L; Song K
    Technol Cancer Res Treat; 2020; 19():1533033820909112. PubMed ID: 32329416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Network-Based Drug Prediction in Thyroid Cancer.
    Xu X; Long H; Xi B; Ji B; Li Z; Dang Y; Jiang C; Yao Y; Yang J
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30641858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient algorithms to discover alterations with complementary functional association in cancer.
    Sarto Basso R; Hochbaum DS; Vandin F
    PLoS Comput Biol; 2019 May; 15(5):e1006802. PubMed ID: 31120875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Sequencing of the NCI-60: Integration into CellMiner and CellMiner CDB.
    Reinhold WC; Varma S; Sunshine M; Elloumi F; Ofori-Atta K; Lee S; Trepel JB; Meltzer PS; Doroshow JH; Pommier Y
    Cancer Res; 2019 Jul; 79(13):3514-3524. PubMed ID: 31113817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico perturbation of drug targets in pan-cancer analysis combining multiple networks and pathways.
    Cava C; Castiglioni I
    Gene; 2019 May; 698():100-106. PubMed ID: 30840853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning the cellular activity representation based on gene regulatory networks for prediction of tumor response to drugs.
    Xie X; Wang F; Wang G; Zhu W; Du X; Wang H
    Artif Intell Med; 2024 Jun; 152():102864. PubMed ID: 38640702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic modeling-based detection of genetic signatures that provide chemoresistance via the E2F1-p73/DNp73-miR-205 network.
    Vera J; Schmitz U; Lai X; Engelmann D; Khan FM; Wolkenhauer O; Pützer BM
    Cancer Res; 2013 Jun; 73(12):3511-24. PubMed ID: 23447575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Network Propagation Predicts Drug Synergy in Cancers.
    Li H; Li T; Quang D; Guan Y
    Cancer Res; 2018 Sep; 78(18):5446-5457. PubMed ID: 30054332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting chemosensitivity using drug perturbed gene dynamics.
    Mannheimer JD; Prasad A; Gustafson DL
    BMC Bioinformatics; 2021 Jan; 22(1):15. PubMed ID: 33413081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene co-expression analysis identifies common modules related to prognosis and drug resistance in cancer cell lines.
    Liu W; Li L; Li W
    Int J Cancer; 2014 Dec; 135(12):2795-803. PubMed ID: 24771271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal control nodes in disease-perturbed networks as targets for combination therapy.
    Hu Y; Chen CH; Ding YY; Wen X; Wang B; Gao L; Tan K
    Nat Commun; 2019 May; 10(1):2180. PubMed ID: 31097707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic analysis of genotype-specific drug responses in cancer.
    Kim N; He N; Kim C; Zhang F; Lu Y; Yu Q; Stemke-Hale K; Greshock J; Wooster R; Yoon S; Mills GB
    Int J Cancer; 2012 Nov; 131(10):2456-64. PubMed ID: 22422301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.