These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31802092)

  • 1. Modular within and between score for drug response prediction in cancer cell lines.
    Wang S; Li J
    Mol Omics; 2020 Feb; 16(1):31-38. PubMed ID: 31802092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WMMDCA: Prediction of Drug Responses by Weight-Based Modular Mapping in Cancer Cell Lines.
    Wang S; Li J; Wang Y
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2733-2740. PubMed ID: 32142453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MSDRP: a deep learning model based on multisource data for predicting drug response.
    Zhao H; Zhang X; Zhao Q; Li Y; Wang J
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37606993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pan-Cancer Prediction of Cell-Line Drug Sensitivity Using Network-Based Methods.
    Pouryahya M; Oh JH; Mathews JC; Belkhatir Z; Moosmüller C; Deasy JO; Tannenbaum AR
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating constitutive gene expression and chemoactivity: mining the NCI60 anticancer screen.
    Covell DG
    PLoS One; 2012; 7(10):e44631. PubMed ID: 23056181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multiple genomic data fused SF2 prediction model, signature identification, and gene regulatory network inference for personalized radiotherapy.
    He QE; Tong YF; Ye Z; Gao LX; Zhang YZ; Wang L; Song K
    Technol Cancer Res Treat; 2020; 19():1533033820909112. PubMed ID: 32329416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Network-Based Drug Prediction in Thyroid Cancer.
    Xu X; Long H; Xi B; Ji B; Li Z; Dang Y; Jiang C; Yao Y; Yang J
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30641858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient algorithms to discover alterations with complementary functional association in cancer.
    Sarto Basso R; Hochbaum DS; Vandin F
    PLoS Comput Biol; 2019 May; 15(5):e1006802. PubMed ID: 31120875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA Sequencing of the NCI-60: Integration into CellMiner and CellMiner CDB.
    Reinhold WC; Varma S; Sunshine M; Elloumi F; Ofori-Atta K; Lee S; Trepel JB; Meltzer PS; Doroshow JH; Pommier Y
    Cancer Res; 2019 Jul; 79(13):3514-3524. PubMed ID: 31113817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BANDRP: a bilinear attention network for anti-cancer drug response prediction based on fingerprint and multi-omics.
    Cao C; Zhao H; Wang J
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39406520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico perturbation of drug targets in pan-cancer analysis combining multiple networks and pathways.
    Cava C; Castiglioni I
    Gene; 2019 May; 698():100-106. PubMed ID: 30840853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic modeling-based detection of genetic signatures that provide chemoresistance via the E2F1-p73/DNp73-miR-205 network.
    Vera J; Schmitz U; Lai X; Engelmann D; Khan FM; Wolkenhauer O; Pützer BM
    Cancer Res; 2013 Jun; 73(12):3511-24. PubMed ID: 23447575
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning the cellular activity representation based on gene regulatory networks for prediction of tumor response to drugs.
    Xie X; Wang F; Wang G; Zhu W; Du X; Wang H
    Artif Intell Med; 2024 Jun; 152():102864. PubMed ID: 38640702
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network Propagation Predicts Drug Synergy in Cancers.
    Li H; Li T; Quang D; Guan Y
    Cancer Res; 2018 Sep; 78(18):5446-5457. PubMed ID: 30054332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting chemosensitivity using drug perturbed gene dynamics.
    Mannheimer JD; Prasad A; Gustafson DL
    BMC Bioinformatics; 2021 Jan; 22(1):15. PubMed ID: 33413081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene co-expression analysis identifies common modules related to prognosis and drug resistance in cancer cell lines.
    Liu W; Li L; Li W
    Int J Cancer; 2014 Dec; 135(12):2795-803. PubMed ID: 24771271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal control nodes in disease-perturbed networks as targets for combination therapy.
    Hu Y; Chen CH; Ding YY; Wen X; Wang B; Gao L; Tan K
    Nat Commun; 2019 May; 10(1):2180. PubMed ID: 31097707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.