BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31802092)

  • 21. Discovery of drug mode of action and drug repositioning from transcriptional responses.
    Iorio F; Bosotti R; Scacheri E; Belcastro V; Mithbaokar P; Ferriero R; Murino L; Tagliaferri R; Brunetti-Pierri N; Isacchi A; di Bernardo D
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14621-6. PubMed ID: 20679242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Drug Response Prediction by Globally Capturing Drug and Cell Line Information in a Heterogeneous Network.
    Le DH; Pham VH
    J Mol Biol; 2018 Sep; 430(18 Pt A):2993-3004. PubMed ID: 29966608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of chemo-response in serous ovarian cancer.
    Gonzalez Bosquet J; Newtson AM; Chung RK; Thiel KW; Ginader T; Goodheart MJ; Leslie KK; Smith BJ
    Mol Cancer; 2016 Oct; 15(1):66. PubMed ID: 27756408
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diverse gene expression patterns in response to anticancer drugs between human and mouse cell lines revealed by a comparative transcriptomic analysis.
    Guo Y; Liang Z; Hou X; Zhang Z
    Mol Med Rep; 2017 Oct; 16(4):4469-4474. PubMed ID: 28791417
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Network-based analysis of prostate cancer cell lines reveals novel marker gene candidates associated with radioresistance and patient relapse.
    Seifert M; Peitzsch C; Gorodetska I; Börner C; Klink B; Dubrovska A
    PLoS Comput Biol; 2019 Nov; 15(11):e1007460. PubMed ID: 31682594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cancer network activity associated with therapeutic response and synergism.
    Serra-Musach J; Mateo F; Capdevila-Busquets E; de Garibay GR; Zhang X; Guha R; Thomas CJ; Grueso J; Villanueva A; Jaeger S; Heyn H; Vizoso M; Pérez H; Cordero A; Gonzalez-Suarez E; Esteller M; Moreno-Bueno G; Tjärnberg A; Lázaro C; Serra V; Arribas J; Benson M; Gustafsson M; Ferrer M; Aloy P; Pujana MÀ
    Genome Med; 2016 Aug; 8(1):88. PubMed ID: 27553366
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mining Natural Products with Anticancer Biological Activity through a Systems Biology Approach.
    Theofylaktou D; Takan I; Karakülah G; Biz GM; Zanni V; Pavlopoulou A; Georgakilas AG
    Oxid Med Cell Longev; 2021; 2021():9993518. PubMed ID: 34422220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CancerOmicsNet: a multi-omics network-based approach to anti-cancer drug profiling.
    Pu L; Singha M; Ramanujam J; Brylinski M
    Oncotarget; 2022; 13():695-706. PubMed ID: 35601606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel heterogeneous network-based method for drug response prediction in cancer cell lines.
    Zhang F; Wang M; Xi J; Yang J; Li A
    Sci Rep; 2018 Feb; 8(1):3355. PubMed ID: 29463808
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A link prediction approach to cancer drug sensitivity prediction.
    Turki T; Wei Z
    BMC Syst Biol; 2017 Oct; 11(Suppl 5):94. PubMed ID: 28984192
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles.
    Li X; Xu Y; Cui H; Huang T; Wang D; Lian B; Li W; Qin G; Chen L; Xie L
    Artif Intell Med; 2017 Nov; 83():35-43. PubMed ID: 28583437
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sparse Partial Least Squares Methods for Joint Modular Pattern Discovery.
    Chen J; Zhang S
    Methods Mol Biol; 2020; 2082():173-186. PubMed ID: 31849015
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gene module analysis of juvenile myelomonocytic leukemia and screening of anticancer drugs.
    Zhao W; Wang L; Yu Y
    Oncol Rep; 2018 Dec; 40(6):3155-3170. PubMed ID: 30272300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tissue-guided LASSO for prediction of clinical drug response using preclinical samples.
    Huang EW; Bhope A; Lim J; Sinha S; Emad A
    PLoS Comput Biol; 2020 Jan; 16(1):e1007607. PubMed ID: 31967990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of Disease-miRNA Networks Across Different Cancer Types Using SWIM.
    Fiscon G; Conte F; Farina L; Pellegrini M; Russo F; Paci P
    Methods Mol Biol; 2019; 1970():169-181. PubMed ID: 30963493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach.
    Emdadi A; Eslahchi C
    J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DeepSynergy: predicting anti-cancer drug synergy with Deep Learning.
    Preuer K; Lewis RPI; Hochreiter S; Bender A; Bulusu KC; Klambauer G
    Bioinformatics; 2018 May; 34(9):1538-1546. PubMed ID: 29253077
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A tool for discovering drug sensitivity and gene expression associations in cancer cells.
    Qin Y; Conley AP; Grimm EA; Roszik J
    PLoS One; 2017; 12(4):e0176763. PubMed ID: 28453553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A network flow-based method to predict anticancer drug sensitivity.
    Qin Y; Chen M; Wang H; Zheng X
    PLoS One; 2015; 10(5):e0127380. PubMed ID: 25992881
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparative analysis of protein interactome networks prioritizes candidate genes with cancer signatures.
    Li Y; Sahni N; Yi S
    Oncotarget; 2016 Nov; 7(48):78841-78849. PubMed ID: 27791983
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.