BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31802092)

  • 41. Grouped Gene Selection of Cancer via Adaptive Sparse Group Lasso Based on Conditional Mutual Information.
    Li J; Dong W; Meng D
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(6):2028-2038. PubMed ID: 29028206
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Artemisinin rewires the protein interaction network in cancer cells: network analysis, pathway identification, and target prediction.
    Huang C; Ba Q; Yue Q; Li J; Li J; Chu R; Wang H
    Mol Biosyst; 2013 Dec; 9(12):3091-100. PubMed ID: 24085322
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Network regularised Cox regression and multiplex network models to predict disease comorbidities and survival of cancer.
    Xu H; Moni MA; LiĆ² P
    Comput Biol Chem; 2015 Dec; 59 Pt B():15-31. PubMed ID: 26611766
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Drug Repositioning for Cancer Therapy Based on Large-Scale Drug-Induced Transcriptional Signatures.
    Lee H; Kang S; Kim W
    PLoS One; 2016; 11(3):e0150460. PubMed ID: 26954019
    [TBL] [Abstract][Full Text] [Related]  

  • 46. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels.
    Geeleher P; Cox N; Huang RS
    PLoS One; 2014; 9(9):e107468. PubMed ID: 25229481
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression.
    Ammad-Ud-Din M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2017 Jul; 33(14):i359-i368. PubMed ID: 28881998
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of Novel Drugs for Hepatocellular Carcinoma Based on Multi-Source Random Walk.
    Yu L; Su R; Wang B; Zhang L; Zou Y; Zhang J; Gao L
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(4):966-977. PubMed ID: 27076463
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multi-way relation-enhanced hypergraph representation learning for anti-cancer drug synergy prediction.
    Liu X; Song C; Liu S; Li M; Zhou X; Zhang W
    Bioinformatics; 2022 Oct; 38(20):4782-4789. PubMed ID: 36000898
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bayesian Network to Infer Drug-Induced Apoptosis Circuits from Connectivity Map Data.
    Yu J; Silva JM
    Methods Mol Biol; 2018; 1783():361-378. PubMed ID: 29767372
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Learning with multiple pairwise kernels for drug bioactivity prediction.
    Cichonska A; Pahikkala T; Szedmak S; Julkunen H; Airola A; Heinonen M; Aittokallio T; Rousu J
    Bioinformatics; 2018 Jul; 34(13):i509-i518. PubMed ID: 29949975
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Knowledge-guided gene prioritization reveals new insights into the mechanisms of chemoresistance.
    Emad A; Cairns J; Kalari KR; Wang L; Sinha S
    Genome Biol; 2017 Aug; 18(1):153. PubMed ID: 28800781
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A computational method for drug sensitivity prediction of cancer cell lines based on various molecular information.
    Ahmadi Moughari F; Eslahchi C
    PLoS One; 2021; 16(4):e0250620. PubMed ID: 33914775
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CMScaller: an R package for consensus molecular subtyping of colorectal cancer pre-clinical models.
    Eide PW; Bruun J; Lothe RA; Sveen A
    Sci Rep; 2017 Nov; 7(1):16618. PubMed ID: 29192179
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Prioritizing therapeutics for lung cancer: an integrative meta-analysis of cancer gene signatures and chemogenomic data.
    Fortney K; Griesman J; Kotlyar M; Pastrello C; Angeli M; Sound-Tsao M; Jurisica I
    PLoS Comput Biol; 2015 Mar; 11(3):e1004068. PubMed ID: 25786242
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Systematic drug perturbations on cancer cells reveal diverse exit paths from proliferative state.
    Zhou JX; Isik Z; Xiao C; Rubin I; Kauffman SA; Schroeder M; Huang S
    Oncotarget; 2016 Feb; 7(7):7415-25. PubMed ID: 26871731
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Network-Oriented Approaches to Anticancer Drug Response.
    Lecca P; Re A
    Methods Mol Biol; 2017; 1513():101-117. PubMed ID: 27807833
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A Multiattribute Gaussian Graphical Model for Inferring Multiscale Regulatory Networks: An Application in Breast Cancer.
    Chiquet J; Rigaill G; Sundqvist M
    Methods Mol Biol; 2019; 1883():143-160. PubMed ID: 30547399
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identifying cancer-related microRNAs based on gene expression data.
    Zhao XM; Liu KQ; Zhu G; He F; Duval B; Richer JM; Huang DS; Jiang CJ; Hao JK; Chen L
    Bioinformatics; 2015 Apr; 31(8):1226-34. PubMed ID: 25505085
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.
    Chen Z; Li J; Wei L
    Artif Intell Med; 2007 Oct; 41(2):161-75. PubMed ID: 17851055
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.