These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 318022)

  • 21. Microelectrode study of insulin effect on apical and basolateral cell membrane of frog skin: comparison with the effect of 1-deamino-8-D-arginine-vasopressin (dDAVP).
    Ponec J; Bakos P; Lichardus B
    Gen Physiol Biophys; 1989 Jun; 8(3):245-55. PubMed ID: 2670663
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [The study of the prostaglandins influence on the water intake and ion transport in the skin of the frog Rana temporaria].
    Natochin IuV; Rodionova EA
    Zh Evol Biokhim Fiziol; 2002; 38(6):578-84. PubMed ID: 12625061
    [No Abstract]   [Full Text] [Related]  

  • 23. Water permeability of cat corneal endothelium in vitro.
    Rhee SW; Green K; Martinez M; Paton D
    Invest Ophthalmol; 1971 Apr; 10(4):288-93. PubMed ID: 5549594
    [No Abstract]   [Full Text] [Related]  

  • 24. Evidence for a central role for electro-osmosis in fluid transport by corneal endothelium.
    Sánchez JM; Li Y; Rubashkin A; Iserovich P; Wen Q; Ruberti JW; Smith RW; Rittenband D; Kuang K; Diecke FP; Fischbarg J
    J Membr Biol; 2002 May; 187(1):37-50. PubMed ID: 12029376
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of alternariol mycotoxin (AOH) on active sodium transport across frog skin (Rana esculenta).
    Barbarossa L; Gallucci E; Bottalico A; Micelli S
    Boll Soc Ital Biol Sper; 1988 Sep; 64(9):825-9. PubMed ID: 2854477
    [No Abstract]   [Full Text] [Related]  

  • 26. The comparative evaluation of methoxyflurane and diethyl ether action upon an active sodium transport across isolated frog skin preparation.
    Szulc R; Knapowski J
    Curr Probl Clin Biochem; 1975; 4():135-9. PubMed ID: 1081443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Comparison of the effects of postpituitary hormone on the active transport of NaCl and on the passive permeation of some electrolytes into the isolated skin of Rana esculenta].
    Pesente L; Gainotti M; Marro F
    Boll Soc Ital Biol Sper; 1964 Jun; 40(12):681-4. PubMed ID: 5878123
    [No Abstract]   [Full Text] [Related]  

  • 28. The development of the oxygen permeability of the avian egg shell and its membranes during incubation.
    Lomholt JP
    J Exp Zool; 1976 Nov; 198(2):177-84. PubMed ID: 978168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of vasopressin on components of Na transport in frog skin.
    Rider J; Thomas S
    J Physiol; 1969 Jul; 203(1):72P-73P. PubMed ID: 5821920
    [No Abstract]   [Full Text] [Related]  

  • 30. Facilitated transport of urea across the baso-lateral membrane of the urinary bladder of Rana esculenta.
    Micelli S; Gallucci E; Lippe C
    Gen Pharmacol; 1981; 12(2):115-8. PubMed ID: 6970704
    [No Abstract]   [Full Text] [Related]  

  • 31. [Influence of the total replacement of the sodium ion of the external solution with cations of less permeability on the iso-osmotic passage of water in the isolated skin of Rana esculenta].
    MARRO F; BIANCHI A; PESENTE L
    Boll Soc Ital Biol Sper; 1961 Jul; 37():644-6. PubMed ID: 13767129
    [No Abstract]   [Full Text] [Related]  

  • 32. Rickettsial cell water and membrane permeability determined by a micro space technique.
    Winkler HH
    Appl Environ Microbiol; 1976 Jan; 31(1):146-9. PubMed ID: 821395
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Effect of luminal "hyperosmolarity" on the permeability of the isolated Rana esculenta colon].
    Storelli C; De Michele L; Ardizzone C; Lippe C; Oreste A
    Boll Soc Ital Biol Sper; 1977 Aug; 53(16):1370-2. PubMed ID: 304729
    [No Abstract]   [Full Text] [Related]  

  • 34. Effect of vasopressin on the permeability of non electrolytes across the skins of Rana esculenta and Bufo bufo.
    Ardizzone C; Lippe C
    Arch Int Physiol Biochim; 1985 Jun; 93(2):135-41. PubMed ID: 2412508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms by which small molecules alter ionic permeability through lipid bilayer membranes.
    Szabo G
    Adv Exp Med Biol; 1977; 84():167-90. PubMed ID: 899948
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Arguments in favor of the independence of the mechanisms of action of various neurohypophyseal hormones on the osmotic flux of water and on the active transport of sodium in the same receptor; studies on the bladder and the skin of Rana esculenta L].
    BOURGUET J; MAETZ J
    Biochim Biophys Acta; 1961 Sep; 52():552-65. PubMed ID: 13871916
    [No Abstract]   [Full Text] [Related]  

  • 37. Permeabilities of ethylene glycol and glycerol through lipid bilayer membranes and some epithelia.
    Lippe C; Gallucci E; Storelli C
    Arch Int Physiol Biochim; 1971 Apr; 79(2):315-8. PubMed ID: 4108440
    [No Abstract]   [Full Text] [Related]  

  • 38. The possible influence of osmotic poration on cell membrane water permeability.
    Muldrew K; Schachar J; Cheng P; Rempel C; Liang S; Wan R
    Cryobiology; 2009 Feb; 58(1):62-68. PubMed ID: 19017529
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Osmotically driven shape transformations in axons.
    Pullarkat PA; Dommersnes P; Fernández P; Joanny JF; Ott A
    Phys Rev Lett; 2006 Feb; 96(4):048104. PubMed ID: 16486900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Permeability properties of the frog skin at various degrees of edge damage.
    Svelto M; Perrini MC; Lippe C
    Arch Int Physiol Biochim; 1975 Dec; 83(5):837-43. PubMed ID: 58602
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.