BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 31802418)

  • 1. Inhibition of the Dead Box RNA Helicase 3 Prevents HIV-1 Tat and Cocaine-Induced Neurotoxicity by Targeting Microglia Activation.
    Aksenova M; Sybrandt J; Cui B; Sikirzhytski V; Ji H; Odhiambo D; Lucius MD; Turner JR; Broude E; Peña E; Lizarraga S; Zhu J; Safro I; Wyatt MD; Shtutman M
    J Neuroimmune Pharmacol; 2020 Jun; 15(2):209-223. PubMed ID: 31802418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pharmacological inhibition of DEAD-Box RNA Helicase 3 attenuates stress granule assembly.
    Cui BC; Sikirzhytski V; Aksenova M; Lucius MD; Levon GH; Mack ZT; Pollack C; Odhiambo D; Broude E; Lizarraga SB; Wyatt MD; Shtutman M
    Biochem Pharmacol; 2020 Dec; 182():114280. PubMed ID: 33049245
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the DEAD box RNA helicase DDX3 as a therapeutic target in colorectal cancer.
    Heerma van Voss MR; Vesuna F; Trumpi K; Brilliant J; Berlinicke C; de Leng W; Kranenburg O; Offerhaus GJ; Bürger H; van der Wall E; van Diest PJ; Raman V
    Oncotarget; 2015 Sep; 6(29):28312-26. PubMed ID: 26311743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting mitochondrial translation by inhibiting DDX3: a novel radiosensitization strategy for cancer treatment.
    Heerma van Voss MR; Vesuna F; Bol GM; Afzal J; Tantravedi S; Bergman Y; Kammers K; Lehar M; Malek R; Ballew M; Ter Hoeve N; Abou D; Thorek D; Berlinicke C; Yazdankhah M; Sinha D; Le A; Abrahams R; Tran PT; van Diest PJ; Raman V
    Oncogene; 2018 Jan; 37(1):63-74. PubMed ID: 28869602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DDX3 RNA helicase is required for HIV-1 Tat function.
    Yasuda-Inoue M; Kuroki M; Ariumi Y
    Biochem Biophys Res Commun; 2013 Nov; 441(3):607-11. PubMed ID: 24183723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GPR18 drives FAAH inhibition-induced neuroprotection against HIV-1 Tat-induced neurodegeneration.
    Hermes DJ; Yadav-Samudrala BJ; Xu C; Paniccia JE; Meeker RB; Armstrong ML; Reisdorph N; Cravatt BF; Mackie K; Lichtman AH; Ignatowska-Jankowska BM; Lysle DT; Fitting S
    Exp Neurol; 2021 Jul; 341():113699. PubMed ID: 33736974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RK-33 Radiosensitizes Prostate Cancer Cells by Blocking the RNA Helicase DDX3.
    Xie M; Vesuna F; Tantravedi S; Bol GM; Heerma van Voss MR; Nugent K; Malek R; Gabrielson K; van Diest PJ; Tran PT; Raman V
    Cancer Res; 2016 Nov; 76(21):6340-6350. PubMed ID: 27634756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA helicase DDX3: a novel therapeutic target in Ewing sarcoma.
    Wilky BA; Kim C; McCarty G; Montgomery EA; Kammers K; DeVine LR; Cole RN; Raman V; Loeb DM
    Oncogene; 2016 May; 35(20):2574-83. PubMed ID: 26364611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Different effects of selective dopamine uptake inhibitors, GBR 12909 and WIN 35428, on HIV-1 Tat toxicity in rat fetal midbrain neurons.
    Aksenov MY; Aksenova MV; Silvers JM; Mactutus CF; Booze RM
    Neurotoxicology; 2008 Nov; 29(6):971-7. PubMed ID: 18606182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combination treatment using DDX3 and PARP inhibitors induces synthetic lethality in BRCA1-proficient breast cancer.
    Heerma van Voss MR; Brilliant JD; Vesuna F; Bol GM; van der Wall E; van Diest PJ; Raman V
    Med Oncol; 2017 Mar; 34(3):33. PubMed ID: 28138868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy.
    Bol GM; Vesuna F; Xie M; Zeng J; Aziz K; Gandhi N; Levine A; Irving A; Korz D; Tantravedi S; Heerma van Voss MR; Gabrielson K; Bordt EA; Polster BM; Cope L; van der Groep P; Kondaskar A; Rudek MA; Hosmane RS; van der Wall E; van Diest PJ; Tran PT; Raman V
    EMBO Mol Med; 2015 May; 7(5):648-69. PubMed ID: 25820276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DEAD-box RNA Helicase DDX3: Functional Properties and Development of DDX3 Inhibitors as Antiviral and Anticancer Drugs.
    Kukhanova MK; Karpenko IL; Ivanov AV
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32102413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cocaine-mediated enhancement of Tat toxicity in rat hippocampal cell cultures: the role of oxidative stress and D1 dopamine receptor.
    Aksenov MY; Aksenova MV; Nath A; Ray PD; Mactutus CF; Booze RM
    Neurotoxicology; 2006 Mar; 27(2):217-28. PubMed ID: 16386305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of HIV and cocaine-induced neurotoxicity and inflammation by cell penetrable itaconate esters.
    Cui BC; Aksenova M; Sikirzhytskaya A; Odhiambo D; Korunova E; Sikirzhytski V; Ji H; Altomare D; Broude E; Frizzell N; Booze R; Wyatt MD; Shtutman M
    bioRxiv; 2023 Sep; ():. PubMed ID: 37808776
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dysregulation of Neuronal Cholesterol Homeostasis upon Exposure to HIV-1 Tat and Cocaine Revealed by RNA-Sequencing.
    Mohseni Ahooyi T; Shekarabi M; Torkzaban B; Langford TD; Burdo TH; Gordon J; Datta PK; Amini S; Khalili K
    Sci Rep; 2018 Nov; 8(1):16300. PubMed ID: 30390000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RK-33 Is a Broad-Spectrum Antiviral Agent That Targets DEAD-Box RNA Helicase DDX3X.
    Yang SNY; Atkinson SC; Audsley MD; Heaton SM; Jans DA; Borg NA
    Cells; 2020 Jan; 9(1):. PubMed ID: 31936642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive role of human immunodeficiency virus type 1 (HIV-1) clade-specific Tat protein and cocaine in blood-brain barrier dysfunction: implications for HIV-1-associated neurocognitive disorder.
    Gandhi N; Saiyed ZM; Napuri J; Samikkannu T; Reddy PV; Agudelo M; Khatavkar P; Saxena SK; Nair MP
    J Neurovirol; 2010 Jul; 16(4):294-305. PubMed ID: 20624003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cocaine and HIV-1 Tat disrupt cholesterol homeostasis in astrocytes: Implications for HIV-associated neurocognitive disorders in cocaine user patients.
    Cotto B; Natarajaseenivasan K; Ferrero K; Wesley L; Sayre M; Langford D
    Glia; 2018 Apr; 66(4):889-902. PubMed ID: 29330881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIV-1 Tat and Cocaine Impair Survival of Cultured Primary Neuronal Cells via a Mitochondrial Pathway.
    De Simone FI; Darbinian N; Amini S; Muniswamy M; White MK; Elrod JW; Datta PK; Langford D; Khalili K
    J Neuroimmune Pharmacol; 2016 Jun; 11(2):358-68. PubMed ID: 27032771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Didehydro-cortistatin A inhibits HIV-1 Tat mediated neuroinflammation and prevents potentiation of cocaine reward in Tat transgenic mice.
    Mediouni S; Jablonski J; Paris JJ; Clementz MA; Thenin-Houssier S; McLaughlin JP; Valente ST
    Curr HIV Res; 2015; 13(1):64-79. PubMed ID: 25613133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.