BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 31802501)

  • 21. Menhaden oil, but not safflower or soybean oil, aids in restoring the polyunsaturated fatty acid profile in the novel delta-6-desaturase null mouse.
    Monteiro J; Li FJ; Maclennan M; Rabalski A; Moghadasian MH; Nakamura MT; Ma DW
    Lipids Health Dis; 2012 May; 11():60. PubMed ID: 22642787
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Echium oil increased the expression of a Δ4 Fads2 fatty acyl desaturase and the deposition of n-3 long-chain polyunsaturated fatty acid in comparison with linseed oil in striped snakehead (Channa striata) muscle.
    Jaya-Ram A; Shu-Chien AC; Kuah MK
    Fish Physiol Biochem; 2016 Aug; 42(4):1107-22. PubMed ID: 26842427
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A complete enzymatic capacity for long-chain polyunsaturated fatty acid biosynthesis is present in the Amazonian teleost tambaqui, Colossoma macropomum.
    Ferraz RB; Kabeya N; Lopes-Marques M; Machado AM; Ribeiro RA; Salaro AL; Ozório R; Castro LFC; Monroig Ó
    Comp Biochem Physiol B Biochem Mol Biol; 2019 Jan; 227():90-97. PubMed ID: 30290221
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The capacity for long-chain polyunsaturated fatty acid synthesis in a carnivorous vertebrate: Functional characterisation and nutritional regulation of a Fads2 fatty acyl desaturase with Δ4 activity and an Elovl5 elongase in striped snakehead (Channa striata).
    Kuah MK; Jaya-Ram A; Shu-Chien AC
    Biochim Biophys Acta; 2015 Mar; 1851(3):248-60. PubMed ID: 25542509
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of Dietary Lipids and Environmental Salinity on the n-3 Long-Chain Polyunsaturated Fatty Acids Biosynthesis Capacity of the Marine Teleost
    Marrero M; Monroig Ó; Betancor M; Herrera M; Pérez JA; Garrido D; Galindo A; Giráldez I; Rodríguez C
    Mar Drugs; 2021 Apr; 19(5):. PubMed ID: 33946805
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Docosahexaenoic acid synthesis from alpha-linolenic acid is inhibited by diets high in polyunsaturated fatty acids.
    Gibson RA; Neumann MA; Lien EL; Boyd KA; Tu WC
    Prostaglandins Leukot Essent Fatty Acids; 2013 Jan; 88(1):139-46. PubMed ID: 22515943
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dietary LC-PUFA and environmental salinity modulate the fatty acid biosynthesis capacity of the euryhaline teleost thicklip grey mullet (Chelon labrosus).
    Marrero M; Monroig Ó; Pérez JA; Betancor MB; Galindo A; Bolaños A; Acosta NG; Rodríguez C
    Comp Biochem Physiol B Biochem Mol Biol; 2024 Jan; 269():110865. PubMed ID: 37230375
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dietary Oil Source and Selenium Supplementation Modulate Fads2 and Elovl5 Transcriptional Levels in Liver and Brain of Meagre (Argyrosomus regius).
    Silva-Brito F; Magnoni LJ; Fonseca SB; Peixoto MJ; Castro LF; Cunha I; de Almeida Ozório RO; Magalhães FA; Gonçalves JF
    Lipids; 2016 Jun; 51(6):729-41. PubMed ID: 27169705
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of dietary alpha-linolenic acid compared with docosahexaenoic acid on brain, retina, liver, and heart in the guinea pig.
    Abedin L; Lien EL; Vingrys AJ; Sinclair AJ
    Lipids; 1999 May; 34(5):475-82. PubMed ID: 10380119
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Increasing Dietary alpha-linolenic acid enhances tissue levels of long-chain n-3 PUFA when linoleic acid intake is low in hamsters.
    Aziz AA; Cruz-Hernandez C; Plouffe LJ; Casey V; Xiao C; Nimal Ratnayake WM
    Ann Nutr Metab; 2010; 57(1):50-8. PubMed ID: 20714137
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Parental nutritional programming and a reminder during juvenile stage affect growth, lipid metabolism and utilisation in later developmental stages of a marine teleost, the gilthead sea bream (Sparus aurata).
    Turkmen S; Zamorano MJ; Fernández-Palacios H; Hernández-Cruz CM; Montero D; Robaina L; Izquierdo M
    Br J Nutr; 2017 Oct; 118(7):500-512. PubMed ID: 28965514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of dietary essential fatty acid ratios and linoleic acid level in grow-finish pigs.
    Becker SL; Humphrey DC; Karriker LA; Brown JT; Skoland KJ; Greiner LL
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 37540487
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative effects of well-balanced diets enriched in α-linolenic or linoleic acids on LC-PUFA metabolism in rat tissues.
    Blanchard H; Pédrono F; Boulier-Monthéan N; Catheline D; Rioux V; Legrand P
    Prostaglandins Leukot Essent Fatty Acids; 2013 May; 88(5):383-9. PubMed ID: 23579035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. LA and ALA prevent glucose intolerance in obese male rats without reducing reactive lipid content, but cause tissue-specific changes in fatty acid composition.
    Matravadia S; Zabielski P; Chabowski A; Mutch DM; Holloway GP
    Am J Physiol Regul Integr Comp Physiol; 2016 Apr; 310(7):R619-30. PubMed ID: 26764053
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of dietary linoleic and alpha-linolenic acid on body composition and the activities of key enzymes of hepatic lipogenesis and fatty acid oxidation in mice.
    Javadi M; Geelen MJ; Lemmens AG; Lankhorst A; Schonewille JT; Terpstra AH; Beynen AC
    J Anim Physiol Anim Nutr (Berl); 2007 Feb; 91(1-2):11-8. PubMed ID: 17217386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of dietary incorporation of linseed oil with soybean isoflavone on fatty acid profiles and lipid metabolism-related gene expression in breast muscle of chickens.
    Gou ZY; Cui XY; Li L; Fan QL; Lin XJ; Wang YB; Jiang ZY; Jiang SQ
    Animal; 2020 Nov; 14(11):2414-2422. PubMed ID: 32423522
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Beneficial effects of re-feeding high α-linolenic acid diets on the muscle quality, cold temperature and disease resistance of tilapia.
    Huang X; Chen F; Guan J; Xu C; Li Y; Xie D
    Fish Shellfish Immunol; 2022 Jul; 126():303-310. PubMed ID: 35662581
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dietary Lipid Sources Influence Fatty Acid Composition in Tissue of Large Yellow Croaker (Larmichthys crocea) by Regulating Triacylglycerol Synthesis and Catabolism at the Transcriptional Level.
    Qiu H; Jin M; Li Y; Lu Y; Hou Y; Zhou Q
    PLoS One; 2017; 12(1):e0169985. PubMed ID: 28081221
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dietary ALA, but not LNA, increase growth, reduce inflammatory processes, and increase anti-oxidant capacity in the marine finfish Larimichthys crocea: dietary ALA, but not LNA, increase growth, reduce inflammatory processes, and increase anti-oxidant capacity in the large yellow croaker.
    Zuo R; Mai K; Xu W; Turchini GM; Ai Q
    Lipids; 2015 Feb; 50(2):149-63. PubMed ID: 25547427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hepatic transcriptome of the euryhaline teleost Japanese seabass (Lateolabrax japonicus) fed diets characterized by α-linolenic acid or linoleic acid.
    Xu H; Liao Z; Wang C; Wei Y; Liang M
    Comp Biochem Physiol Part D Genomics Proteomics; 2019 Mar; 29():106-116. PubMed ID: 30465939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.