These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 31802873)
1. Preparation And Antibacterial Effects Of Carboxymethyl Chitosan-Modified Photo-Responsive Zhang J; Ye CZ; Liu ZY; Yang Q; Ye Y Int J Nanomedicine; 2019; 14():8611-8626. PubMed ID: 31802873 [TBL] [Abstract][Full Text] [Related]
2. Structure and Activity of the Zhu C; Zhang M; Tang Q; Yang Q; Li J; He X; Ye Y J Agric Food Chem; 2019 Dec; 67(51):14143-14151. PubMed ID: 31469956 [TBL] [Abstract][Full Text] [Related]
3. Chitosan decoration improves the rapid and long-term antibacterial activities of cinnamaldehyde-loaded liposomes. Wang X; Cheng F; Wang X; Feng T; Xia S; Zhang X Int J Biol Macromol; 2021 Jan; 168():59-66. PubMed ID: 33279567 [TBL] [Abstract][Full Text] [Related]
4. Photo-induced adhesive carboxymethyl chitosan-based hydrogels with antibacterial and antioxidant properties for accelerating wound healing. Wei Q; Wang Y; Wang H; Qiao L; Jiang Y; Ma G; Zhang W; Hu Z Carbohydr Polym; 2022 Feb; 278():119000. PubMed ID: 34973802 [TBL] [Abstract][Full Text] [Related]
5. A new antibacterial nano-system based on hematoporphyrin-carboxymethyl chitosan conjugate for enhanced photostability and photodynamic activity. Zhou T; Yin Y; Cai W; Wang H; Fan L; He G; Zhang J; Jiang M; Liu J Carbohydr Polym; 2021 Oct; 269():118242. PubMed ID: 34294284 [TBL] [Abstract][Full Text] [Related]
6. Nanoencapsulation of the sasanquasaponin from Camellia oleifera, its photo responsiveness and neuroprotective effects. Ye Y; Xing H; Li Y Int J Nanomedicine; 2014; 9():4475-84. PubMed ID: 25278752 [TBL] [Abstract][Full Text] [Related]
7. Preparation of itraconazole-loaded liposomes coated by carboxymethyl chitosan and its pharmacokinetics and tissue distribution. Wang J; Huang G Drug Deliv; 2011 Nov; 18(8):631-8. PubMed ID: 22111976 [TBL] [Abstract][Full Text] [Related]
8. Neuroprotective Effects of the Nanoparticles of Zinc Sapogenin from Seeds of Camellia oleifera. Yang Q; Fang F; Li Y; Ye Y J Nanosci Nanotechnol; 2017 Apr; 17(4):2394-400. PubMed ID: 29648429 [TBL] [Abstract][Full Text] [Related]
9. Antibacterial activity of chitosan nanofiber meshes with liposomes immobilized releasing gentamicin. Monteiro N; Martins M; Martins A; Fonseca NA; Moreira JN; Reis RL; Neves NM Acta Biomater; 2015 May; 18():196-205. PubMed ID: 25749293 [TBL] [Abstract][Full Text] [Related]
10. Antibacterial effect of protease-responsive cationic eugenol liposomes modified by gamma-polyglutamic acid against Chen X; Wang Y; Li C; Hua Z; Cui H; Lin L J Liposome Res; 2024 Sep; 34(3):411-420. PubMed ID: 37966062 [TBL] [Abstract][Full Text] [Related]
11. Preparation, characterization and antibacterial properties of 6-deoxy-6-arginine modified chitosan. Su Z; Han Q; Zhang F; Meng X; Liu B Carbohydr Polym; 2020 Feb; 230():115635. PubMed ID: 31887858 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of chitosan coated metal organic frameworks (MOFs) for increasing vancomycin bactericidal potentials against resistant S. aureus strain. Ghaffar I; Imran M; Perveen S; Kanwal T; Saifullah S; Bertino MF; Ehrhardt CJ; Yadavalli VK; Shah MR Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110111. PubMed ID: 31546392 [TBL] [Abstract][Full Text] [Related]
13. Rhamnolipid-Based Liposomes as Promising Nano-Carriers for Enhancing the Antibacterial Activity of Peptides Derived from Bacterial Toxin-Antitoxin Systems. Sanches BCP; Rocha CA; Martin Bedoya JG; da Silva VL; da Silva PB; Fusco-Almeida AM; Chorilli M; Contiero J; Crusca E; Marchetto R Int J Nanomedicine; 2021; 16():925-939. PubMed ID: 33603360 [TBL] [Abstract][Full Text] [Related]
14. Synergistic antibacterial effect of ultrasound microbubbles combined with chitosan-modified polymyxin B-loaded liposomes on biofilm-producing Fu YY; Zhang L; Yang Y; Liu CW; He YN; Li P; Yu X Int J Nanomedicine; 2019; 14():1805-1815. PubMed ID: 30880981 [TBL] [Abstract][Full Text] [Related]
15. Preparation and antibacterial properties of O-carboxymethyl chitosan/lincomycin hydrogels. He G; Chen X; Yin Y; Cai W; Ke W; Kong Y; Zheng H J Biomater Sci Polym Ed; 2016; 27(4):370-84. PubMed ID: 26675323 [TBL] [Abstract][Full Text] [Related]
16. The antibacterial structure-activity relationship for common chitosan derivatives. Rathinam S; Solodova S; Kristjánsdóttir I; Hjálmarsdóttir MÁ; Másson M Int J Biol Macromol; 2020 Dec; 165(Pt B):1686-1693. PubMed ID: 33045295 [TBL] [Abstract][Full Text] [Related]
17. pH Effects on solubility, zeta potential, and correlation between antibacterial activity and molecular weight of chitosan. Chang SH; Lin HT; Wu GJ; Tsai GJ Carbohydr Polym; 2015 Dec; 134():74-81. PubMed ID: 26428102 [TBL] [Abstract][Full Text] [Related]
18. Comparative studies of chitosan and carboxymethyl chitosan doped with nickel and copper: Characterization and antibacterial potential. Olanipekun EO; Ayodele O; Olatunde OC; Olusegun SJ Int J Biol Macromol; 2021 Jul; 183():1971-1977. PubMed ID: 34052274 [TBL] [Abstract][Full Text] [Related]
19. Photo-enhanced antibacterial activity of polydopamine-curcumin nanocomposites with excellent photodynamic and photothermal abilities. Su R; Yan H; Li P; Zhang B; Zhang Y; Su W Photodiagnosis Photodyn Ther; 2021 Sep; 35():102417. PubMed ID: 34186263 [TBL] [Abstract][Full Text] [Related]
20. Preparation of cefquinome sulfate cationic proliposome and evaluation of its efficacy on Staphylococcus aureus biofilm. Li D; Chen S; Dou H; Wu W; Liu Q; Zhang L; Shen Y; Shu G; Yuan Z; Lin J; Zhang W; Peng G; Zhong Z; Yin L; Fu H Colloids Surf B Biointerfaces; 2019 Oct; 182():110323. PubMed ID: 31323449 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]