These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31803472)

  • 1. Hypoxia alters vulnerability to capture and the potential for trait-based selection in a scaled-down trawl fishery.
    Thambithurai D; Crespel A; Norin T; Rácz A; Lindström J; Parsons KJ; Killen SS
    Conserv Physiol; 2019; 7(1):coz082. PubMed ID: 31803472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vulnerability of individual fish to capture by trawling is influenced by capacity for anaerobic metabolism.
    Killen SS; Nati JJ; Suski CD
    Proc Biol Sci; 2015 Aug; 282(1813):20150603. PubMed ID: 26246542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulated trapping and trawling exert similar selection on fish morphology.
    Thambithurai D; Rácz A; Lindström J; Parsons KJ; Killen SS
    Ecol Evol; 2022 Feb; 12(2):e8596. PubMed ID: 35169454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shoal familiarity modulates effects of individual metabolism on vulnerability to capture by trawling.
    Hollins JPW; Thambithurai D; Van Leeuwen TE; Allan B; Koeck B; Bailey D; Killen SS
    Conserv Physiol; 2019; 7(1):coz043. PubMed ID: 31380110
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erratum to: Hypoxia alters vulnerability to capture and the potential for trait-based selection in a scaled-down trawl fishery.
    Thambithurai D; Crespel A; Norin T; Rácz A; Lindström J; Parsons KJ; Killen SS
    Conserv Physiol; 2020; 8(1):coz111. PubMed ID: 33186418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fisheries-induced disruptive selection.
    Landi P; Hui C; Dieckmann U
    J Theor Biol; 2015 Jan; 365():204-16. PubMed ID: 25451962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A physiological perspective on fisheries-induced evolution.
    Hollins J; Thambithurai D; Koeck B; Crespel A; Bailey DM; Cooke SJ; Lindström J; Parsons KJ; Killen SS
    Evol Appl; 2018 Jun; 11(5):561-576. PubMed ID: 29875803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using marine reserves to manage impact of bottom trawl fisheries requires consideration of benthic food-web interactions.
    van Denderen PD; Rijnsdorp AD; van Kooten T
    Ecol Appl; 2016 Oct; 26(7):2302-2310. PubMed ID: 27755714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Survival rates and physiological recovery responses in the lesser-spotted catshark (Scyliorhinus canicula) after bottom-trawling.
    Barragán-Méndez C; Ruiz-Jarabo I; Fuentes J; Mancera JM; Sobrino I
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Jul; 233():1-9. PubMed ID: 30905654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fish vulnerability to capture by trapping is modulated by individual parasite density.
    Thambithurai D; Lanthier I; Contant E; Killen SS; Binning SA
    Proc Biol Sci; 2022 Dec; 289(1989):20221956. PubMed ID: 36515121
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fishing constrains phenotypic responses of marine fish to climate variability.
    Morrongiello JR; Sweetman PC; Thresher RE
    J Anim Ecol; 2019 Nov; 88(11):1645-1656. PubMed ID: 31034605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological change alters the evolutionary response to harvest in a freshwater fish.
    Gobin J; Lester NP; Fox MG; Dunlop ES
    Ecol Appl; 2018 Dec; 28(8):2175-2186. PubMed ID: 30285303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy direct inputs and greenhouse gas emissions of the main industrial trawl fishery of Brazil.
    Port D; Perez JA; de Menezes JT
    Mar Pollut Bull; 2014 Nov; 88(1-2):334-43. PubMed ID: 25173595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomic basis of fishing-associated selection varies with population density.
    Crespel A; Schneider K; Miller T; Rácz A; Jacobs A; Lindström J; Elmer KR; Killen SS
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34903645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposite selection on behavioural types by active and passive fishing gears in a simulated guppy Poecilia reticulata fishery.
    Diaz Pauli B; Wiech M; Heino M; Utne-Palm AC
    J Fish Biol; 2015 Mar; 86(3):1030-45. PubMed ID: 25619538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hormonal responsiveness to stress is negatively associated with vulnerability to angling capture in fish.
    Louison MJ; Adhikari S; Stein JA; Suski CD
    J Exp Biol; 2017 Jul; 220(Pt 14):2529-2535. PubMed ID: 28724703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A transactional and collaborative approach to reducing effects of bottom trawling.
    Gleason M; Feller EM; Merrifield M; Copps S; Fujita R; Bell M; Rienecke S; Cook C
    Conserv Biol; 2013 Jun; 27(3):470-9. PubMed ID: 23530985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy direct inputs and greenhouse gas emissions of the main industrial trawl fishery of Brazil.
    Port D; Perez JAA; de Menezes JT
    Mar Pollut Bull; 2016 Jun; 107(1):251-260. PubMed ID: 27068561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating fishery-induced evolution in chinook salmon: the role of gear, location, and genetic correlation among traits.
    Eldridge WH; Hard JJ; Naish KA
    Ecol Appl; 2010 Oct; 20(7):1936-48. PubMed ID: 21049881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Defining trade-offs among conservation, profitability, and food security in the California current bottom-trawl fishery.
    Hilborn R; Stewart IJ; Branch TA; Jensen OP
    Conserv Biol; 2012 Apr; 26(2):257-66. PubMed ID: 22443131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.