These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31804496)

  • 1. Probing the edge-related properties of atomically thin MoS
    Huang TX; Cong X; Wu SS; Lin KQ; Yao X; He YH; Wu JB; Bao YF; Huang SC; Wang X; Tan PH; Ren B
    Nat Commun; 2019 Dec; 10(1):5544. PubMed ID: 31804496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitatively Deciphering Electronic Properties of Defects at Atomically Thin Transition-Metal Dichalcogenides.
    Wu SS; Huang TX; Xu X; Bao YF; Pei XD; Yao X; Cao MF; Lin KQ; Wang X; Wang D; Ren B
    ACS Nano; 2022 Mar; 16(3):4786-4794. PubMed ID: 35224974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Localized Strain in a MoS
    Rahaman M; Rodriguez RD; Plechinger G; Moras S; Schüller C; Korn T; Zahn DRT
    Nano Lett; 2017 Oct; 17(10):6027-6033. PubMed ID: 28925710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomically Flat Zigzag Edges in Monolayer MoS
    Chen Q; Li H; Xu W; Wang S; Sawada H; Allen CS; Kirkland AI; Grossman JC; Warner JH
    Nano Lett; 2017 Sep; 17(9):5502-5507. PubMed ID: 28799770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tip-enhanced Raman spectroscopy: principles, practice, and applications to nanospectroscopic imaging of 2D materials.
    Shao F; Zenobi R
    Anal Bioanal Chem; 2019 Jan; 411(1):37-61. PubMed ID: 30306237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tip-enhanced nanoscopy of two-dimensional transition metal dichalcogenides: progress and perspectives.
    Shao J; Su W
    Nanoscale; 2022 Dec; 14(46):17119-17133. PubMed ID: 36394273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strain-Dependent Edge Structures in MoS
    Tinoco M; Maduro L; Masaki M; Okunishi E; Conesa-Boj S
    Nano Lett; 2017 Nov; 17(11):7021-7026. PubMed ID: 29064254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of Raman spectroscopy in graphene and MoS2-type transition metal dichalcogenides.
    Pimenta MA; Del Corro E; Carvalho BR; Fantini C; Malard LM
    Acc Chem Res; 2015 Jan; 48(1):41-7. PubMed ID: 25490518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Mapping of Nanodefects within 2D Covalent Monolayers by Tip-Enhanced Raman Spectroscopy.
    Shao F; Dai W; Zhang Y; Zhang W; Schlüter AD; Zenobi R
    ACS Nano; 2018 May; 12(5):5021-5029. PubMed ID: 29659244
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinguishing Zigzag and Armchair Edges on Graphene Nanoribbons by X-ray Photoelectron and Raman Spectroscopies.
    Kim J; Lee N; Min YH; Noh S; Kim NK; Jung S; Joo M; Yamada Y
    ACS Omega; 2018 Dec; 3(12):17789-17796. PubMed ID: 31458375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-Induced Particle Adsorption on Atomically Thin MoS2.
    Tran Khac BC; Jeon KJ; Choi ST; Kim YS; DelRio FW; Chung KH
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):2974-84. PubMed ID: 26795729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant Raman Scattering Study of Strain and Defects in Chemical Vapor Deposition Grown MoS
    Gontijo RN; Bunker N; Graiser SL; Ding X; Smeu M; Elías AL
    Small; 2024 Apr; ():e2310685. PubMed ID: 38558523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Edge Engineering of Two-Dimensional Layered Transition-Metal Dichalcogenides by Chemical Vapor Deposition.
    Fu W; John M; Maddumapatabandi TD; Bussolotti F; Yau YS; Lin M; Johnson Goh KE
    ACS Nano; 2023 Sep; 17(17):16348-16368. PubMed ID: 37646426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving resolution in quantum subnanometre-gap tip-enhanced Raman nanoimaging.
    Zhang Y; Voronine DV; Qiu S; Sinyukov AM; Hamilton M; Liege Z; Sokolov AV; Zhang Z; Scully MO
    Sci Rep; 2016 May; 6():25788. PubMed ID: 27220882
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raman modes of MoS2 used as fingerprint of van der Waals interactions in 2-D crystal-based heterostructures.
    Zhou KG; Withers F; Cao Y; Hu S; Yu G; Casiraghi C
    ACS Nano; 2014 Oct; 8(10):9914-24. PubMed ID: 25198732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides.
    Chow PK; Jacobs-Gedrim RB; Gao J; Lu TM; Yu B; Terrones H; Koratkar N
    ACS Nano; 2015 Feb; 9(2):1520-7. PubMed ID: 25603228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of gamma irradiation on the physical properties of MoS
    Chavda CP; Srivastava A; Vaughan E; Wang J; Gartia MR; Veronis G
    Phys Chem Chem Phys; 2023 Aug; 25(33):22359-22369. PubMed ID: 37580985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards the evaluation of defects in MoS
    Verhagen T; Guerra VLP; Haider G; Kalbac M; Vejpravova J
    Nanoscale; 2020 Feb; 12(5):3019-3028. PubMed ID: 31834348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Raman Spectroscopic Probe for Nonlinear MoS
    Yang R; Yousuf SMEH; Lee J; Zhang P; Liu Z; Feng PX
    Nano Lett; 2022 Jul; 22(14):5780-5787. PubMed ID: 35792575
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface energy engineering for tunable wettability through controlled synthesis of MoS2.
    Gaur AP; Sahoo S; Ahmadi M; Dash SP; Guinel MJ; Katiyar RS
    Nano Lett; 2014 Aug; 14(8):4314-21. PubMed ID: 25073904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.