BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 31804509)

  • 1. Accumulation and fractionation of rare earth elements are conserved traits in the Phytolacca genus.
    Grosjean N; Le Jean M; Berthelot C; Chalot M; Gross EM; Blaudez D
    Sci Rep; 2019 Dec; 9(1):18458. PubMed ID: 31804509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation and fractionation of rare earth elements (REEs) in the naturally grown Phytolacca americana L. in southern China.
    Yuan M; Liu C; Liu WS; Guo MN; Morel JL; Huot H; Yu HJ; Tang YT; Qiu RL
    Int J Phytoremediation; 2018 Apr; 20(5):415-423. PubMed ID: 29608375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous hyperaccumulation of rare earth elements, manganese and aluminum in Phytolacca americana in response to soil properties.
    Liu C; Liu WS; van der Ent A; Morel JL; Zheng HX; Wang GB; Tang YT; Qiu RL
    Chemosphere; 2021 Nov; 282():131096. PubMed ID: 34470158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The translocation and fractionation of rare earth elements (REEs) via the phloem in Phytolacca americana L.
    Guo Y; Xu S; Yan S; Lei S; Gao Y; Chen K; Shi X; Yuan M; Yao H
    Environ Sci Pollut Res Int; 2023 Nov; 30(53):114044-114055. PubMed ID: 37858022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractionation mechanisms of rare earth elements (REEs) in hydroponic wheat: an application for metal accumulation by plants.
    Ding S; Liang T; Zhang C; Huang Z; Xie Y; Chen T
    Environ Sci Technol; 2006 Apr; 40(8):2686-91. PubMed ID: 16683609
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoextraction of rare earth elements in herbaceous plant species growing close to roads.
    Mikołajczak P; Borowiak K; Niedzielski P
    Environ Sci Pollut Res Int; 2017 Jun; 24(16):14091-14103. PubMed ID: 28411316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accumulation and fractionation of rare earth elements (REEs) in wheat: controlled by phosphate precipitation, cell wall absorption and solution complexation.
    Ding S; Liang T; Zhang C; Yan J; Zhang Z
    J Exp Bot; 2005 Oct; 56(420):2765-75. PubMed ID: 16131504
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytolacca americana from contaminated and noncontaminated soils of South Korea: effects of elevated temperature, CO(2) and simulated acid rain on plant growth response.
    Kim YO; Rodriguez RJ; Lee EJ; Redman RS
    J Chem Ecol; 2008 Nov; 34(11):1501-9. PubMed ID: 18956232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractionations of rare earth elements in plants and their conceptive model.
    Ding S; Liang T; Yan J; Zhang Z; Huang Z; Xie Y
    Sci China C Life Sci; 2007 Feb; 50(1):47-55. PubMed ID: 17393082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environmental biogeochemical behaviors of rare earth elements in soil-plant systems.
    Liang T; Zhang S; Wang L; Kung HT; Wang Y; Hu A; Ding S
    Environ Geochem Health; 2005 Dec; 27(4):301-11. PubMed ID: 16027965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manganese uptake and interactions with cadmium in the hyperaccumulator--Phytolacca Americana L.
    Peng K; Luo C; You W; Lian C; Li X; Shen Z
    J Hazard Mater; 2008 Jun; 154(1-3):674-81. PubMed ID: 18068296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geochemical behaviour of rare earths in Vitis vinifera grafted onto different rootstocks and growing on several soils.
    Censi P; Saiano F; Pisciotta A; Tuzzolino N
    Sci Total Environ; 2014 Mar; 473-474():597-608. PubMed ID: 24394369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhizospheric Lactobacillus spp. contribute to the high Cd-accumulating characteristics of Phytolacca spp. in acidic Cd-contaminated soil.
    Li X; Li B; Liu Y; Xu J
    Environ Res; 2023 Dec; 238(Pt 2):117270. PubMed ID: 37776944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accumulation, translocation, and fractionation of rare earth elements (REEs) in fern species of hyperaccumulators and non-hyperaccumulators growing in urban areas.
    Wang Y; He L; Dong S; Fu H; Wang G; Liang X; Tan W; He H; Zhu R; Zhu J
    Sci Total Environ; 2023 Dec; 905():167344. PubMed ID: 37751840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae).
    Xue SG; Chen YX; Reeves RD; Baker AJ; Lin Q; Fernando DR
    Environ Pollut; 2004 Oct; 131(3):393-9. PubMed ID: 15261402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytolacca acinosa Roxb. with Arthrobacter echigonensis MN1405 enhances heavy metal phytoremediation.
    Li F; Tang K; Cai C; Xu X
    Int J Phytoremediation; 2016 Oct; 18(10):956-65. PubMed ID: 27159623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Speciation of rare earth elements in soil and accumulation by wheat with rare earth fertilizer application.
    Zhang S; Shan XQ
    Environ Pollut; 2001; 112(3):395-405. PubMed ID: 11291446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of ligands in accumulation and fractionation of rare Earth elements in plants: examples of phosphate and citrate.
    Ding S; Liang T; Zhang C; Yan J; Zhang Z; Sun Q
    Biol Trace Elem Res; 2005 Oct; 107(1):73-86. PubMed ID: 16170224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between concentration of rare earth elements in soil and their distribution in plants growing near a frequented road.
    Mleczek P; Borowiak K; Budka A; Niedzielski P
    Environ Sci Pollut Res Int; 2018 Aug; 25(24):23695-23711. PubMed ID: 29872986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation of Mn-contaminated paddy soil by two hyperaccumulators (Phytolacca americana and Polygonum hydropiper) aided with citric acid.
    Yang QW; Ke HM; Liu SJ; Zeng Q
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25933-25941. PubMed ID: 29961905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.