BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 31804721)

  • 1. Role of the N-Terminal Transmembrane Helix Contacts in the Activation of FGFR3.
    Matsuoka D; Kamiya M; Sato T; Sugita Y
    J Comput Chem; 2020 Mar; 41(6):561-572. PubMed ID: 31804721
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR-based approach to measure the free energy of transmembrane helix-helix interactions.
    Mineev KS; Lesovoy DM; Usmanova DR; Goncharuk SA; Shulepko MA; Lyukmanova EN; Kirpichnikov MP; Bocharov EV; Arseniev AS
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):164-72. PubMed ID: 24036227
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of dimerization efficiency of transmembrane domains in activation of fibroblast growth factor receptor 3.
    Volynsky PE; Polyansky AA; Fakhrutdinova GN; Bocharov EV; Efremov RG
    J Am Chem Soc; 2013 Jun; 135(22):8105-8. PubMed ID: 23679838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coupling of transmembrane helix orientation to membrane release of the juxtamembrane region in FGFR3.
    Tamagaki H; Furukawa Y; Yamaguchi R; Hojo H; Aimoto S; Smith SO; Sato T
    Biochemistry; 2014 Aug; 53(30):5000-7. PubMed ID: 25010350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of the achondroplasia mutation on FGFR3 dimerization and FGFR3 structural response to fgf1 and fgf2: A quantitative FRET study in osmotically derived plasma membrane vesicles.
    Sarabipour S; Hristova K
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt A):1436-42. PubMed ID: 27040652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of FGFR3 transmembrane domain dimer: implications for signaling and human pathologies.
    Bocharov EV; Lesovoy DM; Goncharuk SA; Goncharuk MV; Hristova K; Arseniev AS
    Structure; 2013 Nov; 21(11):2087-93. PubMed ID: 24120763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary and secondary dimer interfaces of the fibroblast growth factor receptor 3 transmembrane domain: characterization via multiscale molecular dynamics simulations.
    Reddy T; Manrique S; Buyan A; Hall BA; Chetwynd A; Sansom MS
    Biochemistry; 2014 Jan; 53(2):323-32. PubMed ID: 24397339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FGFR3 unliganded dimer stabilization by the juxtamembrane domain.
    Sarabipour S; Hristova K
    J Mol Biol; 2015 Apr; 427(8):1705-14. PubMed ID: 25688803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FGFR3 heterodimerization in achondroplasia, the most common form of human dwarfism.
    He L; Shobnam N; Wimley WC; Hristova K
    J Biol Chem; 2011 Apr; 286(15):13272-81. PubMed ID: 21324899
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insulin-like growth factor-1 rescues the mutated FGF receptor 3 (G380R) expressing ATDC5 cells from apoptosis through phosphatidylinositol 3-kinase and MAPK.
    Koike M; Yamanaka Y; Inoue M; Tanaka H; Nishimura R; Seino Y
    J Bone Miner Res; 2003 Nov; 18(11):2043-51. PubMed ID: 14606518
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The transmembrane mutation G380R in fibroblast growth factor receptor 3 uncouples ligand-mediated receptor activation from down-regulation.
    Monsonego-Ornan E; Adar R; Feferman T; Segev O; Yayon A
    Mol Cell Biol; 2000 Jan; 20(2):516-22. PubMed ID: 10611230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Severe achondroplasia due to two de novo variants in the transmembrane domain of FGFR3 on the same allele: A case report.
    Nagata T; Matsushita M; Mishima K; Kamiya Y; Kato K; Toyama M; Ogi T; Ishiguro N; Kitoh H
    Mol Genet Genomic Med; 2020 Mar; 8(3):e1148. PubMed ID: 31975530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The pathogenic A391E mutation in FGFR3 induces a structural change in the transmembrane domain dimer.
    Mudumbi KC; Julius A; Herrmann J; Li E
    J Membr Biol; 2013 Jun; 246(6):487-93. PubMed ID: 23727984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FGFR3 transmembrane domain interactions persist in the presence of its extracellular domain.
    Sarabipour S; Hristova K
    Biophys J; 2013 Jul; 105(1):165-71. PubMed ID: 23823235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FGFR3 dimer stabilization due to a single amino acid pathogenic mutation.
    Li E; You M; Hristova K
    J Mol Biol; 2006 Feb; 356(3):600-12. PubMed ID: 16384584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of FGFR3 signaling at the cell membrane via total internal reflection fluorescence microscopy to compare the activation of FGFR3 mutants.
    Hartl I; Brumovska V; Striedner Y; Yasari A; Schütz GJ; Sevcsik E; Tiemann-Boege I
    J Biol Chem; 2023 Feb; 299(2):102832. PubMed ID: 36581204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hill coefficient analysis of transmembrane helix dimerization.
    Soong R; Merzlyakov M; Hristova K
    J Membr Biol; 2009 Jul; 230(1):49-55. PubMed ID: 19603128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies of receptor tyrosine kinase transmembrane domain interactions: the EmEx-FRET method.
    Merzlyakov M; Chen L; Hristova K
    J Membr Biol; 2007 Feb; 215(2-3):93-103. PubMed ID: 17565424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knock-in human FGFR3 achondroplasia mutation as a mouse model for human skeletal dysplasia.
    Lee YC; Song IW; Pai YJ; Chen SD; Chen YT
    Sci Rep; 2017 Feb; 7():43220. PubMed ID: 28230213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and in silico characterization of p.G380R substitution in FGFR3, associated with achondroplasia in a non-consanguineous Pakistani family.
    Ajmal M; Mir A; Shoaib M; Malik SA; Nasir M
    Diagn Pathol; 2017 Jul; 12(1):47. PubMed ID: 28679403
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.