These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 31804791)
21. Dissipative out-of-equilibrium assembly of man-made supramolecular materials. van Rossum SAP; Tena-Solsona M; van Esch JH; Eelkema R; Boekhoven J Chem Soc Rev; 2017 Sep; 46(18):5519-5535. PubMed ID: 28703817 [TBL] [Abstract][Full Text] [Related]
22. Dissipative and Autonomous Square-Wave Self-Oscillation of a Macroscopic Hybrid Self-Assembly under Continuous Light Irradiation. Ikegami T; Kageyama Y; Obara K; Takeda S Angew Chem Int Ed Engl; 2016 Jul; 55(29):8239-43. PubMed ID: 27194603 [TBL] [Abstract][Full Text] [Related]
23. Sound-driven dissipative self-assembly of aromatic biomolecules into functional nanoparticles. Bhangu SK; Bocchinfuso G; Ashokkumar M; Cavalieri F Nanoscale Horiz; 2020 Mar; 5(3):553-563. PubMed ID: 32118232 [TBL] [Abstract][Full Text] [Related]
24. Dissipative Synthetic DNA-Based Receptors for the Transient Loading and Release of Molecular Cargo. Del Grosso E; Amodio A; Ragazzon G; Prins LJ; Ricci F Angew Chem Int Ed Engl; 2018 Aug; 57(33):10489-10493. PubMed ID: 29603570 [TBL] [Abstract][Full Text] [Related]
25. Fuel-Driven Transient Crystallization of a Cucurbit[8]uril-Based Host-Guest Complex. Choi S; Mukhopadhyay RD; Kim Y; Hwang IC; Hwang W; Ghosh SK; Baek K; Kim K Angew Chem Int Ed Engl; 2019 Nov; 58(47):16850-16853. PubMed ID: 31544353 [TBL] [Abstract][Full Text] [Related]
26. Cyclic Macroscopic Assembly and Disassembly Driven by Ionic Strength Fuel: A Waste-Free Approach. Zhao T; Wang Z; Yang Y; Liu K; Wang X ACS Appl Mater Interfaces; 2023 Jul; 15(27):33169-33179. PubMed ID: 37402443 [TBL] [Abstract][Full Text] [Related]
27. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches. Shigemitsu H; Hamachi I Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940 [TBL] [Abstract][Full Text] [Related]
28. Fuel-Selective Transient Activation of Nanosystems for Signal Generation. Della Sala F; Maiti S; Bonanni A; Scrimin P; Prins LJ Angew Chem Int Ed Engl; 2018 Feb; 57(6):1611-1615. PubMed ID: 29274255 [TBL] [Abstract][Full Text] [Related]
29. Dissipative Self-Assembly Driven by the Consumption of Chemical Fuels. De S; Klajn R Adv Mater; 2018 Oct; 30(41):e1706750. PubMed ID: 29520846 [TBL] [Abstract][Full Text] [Related]
31. Dynamic supramolecular complexes constructed by orthogonal self-assembly. Hu XY; Xiao T; Lin C; Huang F; Wang L Acc Chem Res; 2014 Jul; 47(7):2041-51. PubMed ID: 24873508 [TBL] [Abstract][Full Text] [Related]
32. Energy consumption in chemical fuel-driven self-assembly. Ragazzon G; Prins LJ Nat Nanotechnol; 2018 Oct; 13(10):882-889. PubMed ID: 30224796 [TBL] [Abstract][Full Text] [Related]
33. Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels. Chen JL; Maiti S; Fortunati I; Ferrante C; Prins LJ Chemistry; 2017 Aug; 23(48):11549-11559. PubMed ID: 28544114 [TBL] [Abstract][Full Text] [Related]
34. Transient dormant monomer states for supramolecular polymers with low dispersity. Jalani K; Das AD; Sasmal R; Agasti SS; George SJ Nat Commun; 2020 Aug; 11(1):3967. PubMed ID: 32770122 [TBL] [Abstract][Full Text] [Related]
35. Out-of-Equilibrium Colloidal Assembly Driven by Chemical Reaction Networks. van Ravensteijn BGP; Voets IK; Kegel WK; Eelkema R Langmuir; 2020 Sep; 36(36):10639-10656. PubMed ID: 32787015 [TBL] [Abstract][Full Text] [Related]
36. Engineering orthogonality in supramolecular polymers: from simple scaffolds to complex materials. Elacqua E; Lye DS; Weck M Acc Chem Res; 2014 Aug; 47(8):2405-16. PubMed ID: 24905869 [TBL] [Abstract][Full Text] [Related]
37. Kinetically Controlled Lifetimes in Redox-Responsive Transient Supramolecular Hydrogels. Wojciechowski JP; Martin AD; Thordarson P J Am Chem Soc; 2018 Feb; 140(8):2869-2874. PubMed ID: 29406709 [TBL] [Abstract][Full Text] [Related]
38. Smart Nanocages as a Tool for Controlling Supramolecular Aggregation. Picchetti P; Moreno-Alcántar G; Talamini L; Mourgout A; Aliprandi A; De Cola L J Am Chem Soc; 2021 May; 143(20):7681-7687. PubMed ID: 33891394 [TBL] [Abstract][Full Text] [Related]
39. ATP-Driven Synthetic Supramolecular Assemblies: From ATP as a Template to Fuel. Mishra A; Dhiman S; George SJ Angew Chem Int Ed Engl; 2021 Feb; 60(6):2740-2756. PubMed ID: 32519456 [TBL] [Abstract][Full Text] [Related]