These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 31804793)
1. Contact Killing of Cu-Bearing Stainless Steel Based on Charge Transfer Caused by the Microdomain Potential Difference. Zhang X; Yang C; Yang K ACS Appl Mater Interfaces; 2020 Jan; 12(1):361-372. PubMed ID: 31804793 [TBL] [Abstract][Full Text] [Related]
2. Surface Roughness of Cu-Bearing Stainless Steel Affects Its Contact-Killing Efficiency by Mediating the Interfacial Interaction with Bacteria. Zhang X; Yang C; Xi T; Zhao J; Yang K ACS Appl Mater Interfaces; 2021 Jan; 13(2):2303-2315. PubMed ID: 33395246 [TBL] [Abstract][Full Text] [Related]
3. Antibacterial activity of copper-bearing 316L stainless steel for the prevention of implant-related infection. Zhuang Y; Zhang S; Yang K; Ren L; Dai K J Biomed Mater Res B Appl Biomater; 2020 Feb; 108(2):484-495. PubMed ID: 31074107 [TBL] [Abstract][Full Text] [Related]
4. Microstructure, corrosion and tribological and antibacterial properties of Ti-Cu coated stainless steel. Jin X; Gao L; Liu E; Yu F; Shu X; Wang H J Mech Behav Biomed Mater; 2015 Oct; 50():23-32. PubMed ID: 26093948 [TBL] [Abstract][Full Text] [Related]
5. Dual Antibacterial Properties of Copper-Coated Nanotextured Stainless Steel. Tripathi A; Park J; Pho T; Champion JA Small; 2024 Sep; 20(38):e2311546. PubMed ID: 38766975 [TBL] [Abstract][Full Text] [Related]
6. Antibacterial mechanism of Cu-bearing 430 ferritic stainless steel. Zhang Z; Zhang XR; Jin T; Yang CG; Sun YP; Li Q; Yang K Rare Metals; 2022; 41(2):559-569. PubMed ID: 34177195 [TBL] [Abstract][Full Text] [Related]
7. Effect of copper addition on mechanical properties, corrosion resistance and antibacterial property of 316L stainless steel. Xi T; Shahzad MB; Xu D; Sun Z; Zhao J; Yang C; Qi M; Yang K Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():1079-1085. PubMed ID: 27987662 [TBL] [Abstract][Full Text] [Related]
8. Microbiological influenced corrosion resistance characteristics of a 304L-Cu stainless steel against Escherichia coli. Nan L; Xu D; Gu T; Song X; Yang K Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():228-34. PubMed ID: 25579918 [TBL] [Abstract][Full Text] [Related]
9. Antibacterial durability and biocompatibility of antibacterial-passivated 316L stainless steel in simulated physiological environment. Zhao J; Zhai Z; Sun D; Yang C; Zhang X; Huang N; Jiang X; Yang K Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():396-410. PubMed ID: 30948076 [TBL] [Abstract][Full Text] [Related]
10. [In vitro evaluation of antibacterial activity and cytocompatibility of antibacterial stainless steel containing copper]. Guan J; Guo L; Fu Y; Chai H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):333-7. PubMed ID: 23858758 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317L-Cu stainless steel and its corrosion resistance. Sun D; Xu D; Yang C; Chen J; Shahzad MB; Sun Z; Zhao J; Gu T; Yang K; Wang G Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():744-50. PubMed ID: 27612768 [TBL] [Abstract][Full Text] [Related]
12. Grafting of ionic liquids on stainless steel surface for antibacterial application. Pang LQ; Zhong LJ; Zhou HF; Wu XE; Chen XD Colloids Surf B Biointerfaces; 2015 Feb; 126():162-8. PubMed ID: 25561415 [TBL] [Abstract][Full Text] [Related]
13. Surface microstructure and antibacterial property of an active-screen plasma alloyed austenitic stainless steel surface with Cu and N. Dong Y; Li X; Bell T; Sammons R; Dong H Biomed Mater; 2010 Oct; 5(5):054105. PubMed ID: 20876967 [TBL] [Abstract][Full Text] [Related]
14. Osteogenic ability of Cu-bearing stainless steel. Ren L; Wong HM; Yan CH; Yeung KW; Yang K J Biomed Mater Res B Appl Biomater; 2015 Oct; 103(7):1433-44. PubMed ID: 25418073 [TBL] [Abstract][Full Text] [Related]
15. Study on antibacterial mechanism of copper-bearing austenitic antibacterial stainless steel by atomic force microscopy. Nan L; Liu Y; Lü M; Yang K J Mater Sci Mater Med; 2008 Sep; 19(9):3057-62. PubMed ID: 18392666 [TBL] [Abstract][Full Text] [Related]
16. A novel ureteral stent material with antibacterial and reducing encrustation properties. Zhao J; Cao Z; Ren L; Chen S; Zhang B; Liu R; Yang K Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():221-228. PubMed ID: 27524016 [TBL] [Abstract][Full Text] [Related]
17. Inhibition efficiency of 304-Cu stainless steel against oral bacterial biofilm. Lan Y; Yang J; Liu X; Zhao H; Zhang X; Yin X; Yang C; Yang K; Liu Y J Appl Biomater Funct Mater; 2022; 20():22808000211065259. PubMed ID: 35086381 [TBL] [Abstract][Full Text] [Related]
18. Cu-bearing steel reduce inflammation after stent implantation. Li J; Ren L; Zhang S; Ren G; Yang K J Mater Sci Mater Med; 2015 Feb; 26(2):114. PubMed ID: 25665852 [TBL] [Abstract][Full Text] [Related]
19. An investigation of the antibacterial ability and cytotoxicity of a novel cu-bearing 317L stainless steel. Sun D; Xu D; Yang C; Shahzad MB; Sun Z; Xia J; Zhao J; Gu T; Yang K; Wang G Sci Rep; 2016 Jul; 6():29244. PubMed ID: 27385507 [TBL] [Abstract][Full Text] [Related]
20. Enhanced antibacterial and corrosion resistance of copper-containing 2205 duplex stainless steel against the corrosive bacterium Shewanella algae. Li M; Zhou J; Li Y; Zhu G; Hu Z; Liu S; Han B; Zhao H; Liang Y; Liu D; Xu D; Li J Bioelectrochemistry; 2024 Dec; 160():108768. PubMed ID: 38897000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]