These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31804806)

  • 1. Selective Phosphate Removal from Water and Wastewater using Sorption: Process Fundamentals and Removal Mechanisms.
    Wu B; Wan J; Zhang Y; Pan B; Lo IMC
    Environ Sci Technol; 2020 Jan; 54(1):50-66. PubMed ID: 31804806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH)
    Wu B; Fang L; Fortner JD; Guan X; Lo IMC
    Water Res; 2017 Dec; 126():179-188. PubMed ID: 28950228
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lanthanum molybdate/magnetite for selective phosphate removal from wastewater: characterization, performance, and sorption mechanisms.
    Luo F; Feng X; Jiang X; Zhou A; Xie P; Wang Z; Tao T; Wan J
    Environ Sci Pollut Res Int; 2021 Jan; 28(4):4342-4351. PubMed ID: 32944858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layered double hydroxides for removing and recovering phosphate: Recent advances and future directions.
    Keyikoglu R; Khataee A; Yoon Y
    Adv Colloid Interface Sci; 2022 Feb; 300():102598. PubMed ID: 35007948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot fabrication of reusable hybrid sorbents for quick removal of oils from wastewater.
    Kizil S; Bulbul Sonmez H
    J Environ Manage; 2020 May; 261():109911. PubMed ID: 32148250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrified nanohybrid filter for enhanced phosphorus removal from water.
    Wu W; Zhao Z; Li M; Zheng W; You S; Wei Q; Liu Y
    Chemosphere; 2022 Sep; 303(Pt 3):135226. PubMed ID: 35688105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-based adsorbents for water eutrophication remediation: A review of performances and mechanisms.
    Liu B; Gai S; Lan Y; Cheng K; Yang F
    Environ Res; 2022 Sep; 212(Pt B):113353. PubMed ID: 35483409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel glucose-based highly selective phosphate adsorbent.
    Liang H; Zhang H; Wang Q; Xu C; Geng Z; She D; Du X
    Sci Total Environ; 2021 Oct; 792():148452. PubMed ID: 34157533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-linked dithiocarbamate-modified cellulose with enhanced thermal stability and dispersibility as a sorbent for arsenite removal.
    Nakakubo K; Endo M; Sakai Y; Biswas FB; Wong KH; Mashio AS; Taniguchi T; Nishimura T; Maeda K; Hasegawa H
    Chemosphere; 2022 Nov; 307(Pt 1):135671. PubMed ID: 35842048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxyapatite-based sorbents: elaboration, characterization and application for the removal of catechol from the aqueous phase.
    Sebei H; Pham Minh D; Lyczko N; Sharrock P; Nzihou A
    Environ Technol; 2017 Oct; 38(20):2611-2620. PubMed ID: 27937683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly selective capture of phosphate ions from water by a water stable metal-organic framework modified with polyethyleneimine.
    Qiu H; Yang L; Liu F; Zhao Y; Liu L; Zhu J; Song M
    Environ Sci Pollut Res Int; 2017 Oct; 24(30):23694-23703. PubMed ID: 28861692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid anion exchanger for trace phosphate removal from water and wastewater.
    Blaney LM; Cinar S; SenGupta AK
    Water Res; 2007 Apr; 41(7):1603-13. PubMed ID: 17306856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metallic iron (Fe
    Konadu-Amoah B; Hu R; Ndé-Tchoupé AI; Gwenzi W; Noubactep C
    J Environ Manage; 2022 Aug; 315():115157. PubMed ID: 35526394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the Mechanisms of Selectivity for Environmentally Significant Oxo-Anion Removal during Water Treatment: A Review of Common Competing Oxo-Anions and Tools for Quantifying Selective Adsorption.
    Pincus LN; Rudel HE; Petrović PV; Gupta S; Westerhoff P; Muhich CL; Zimmerman JB
    Environ Sci Technol; 2020 Aug; 54(16):9769-9790. PubMed ID: 32515947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferable phosphate sequestration using polymer-supported Mg/Al layered double hydroxide nanosheets.
    Nie G; Wu L; Qiu S; Xu Z; Wang H
    J Colloid Interface Sci; 2022 May; 614():583-592. PubMed ID: 35121517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extractive fixed-site polymer sorbent for selective boron removal from natural water.
    Thakur N; Kumar SA; Shinde RN; Pandey AK; Kumar SD; Reddy AV
    J Hazard Mater; 2013 Sep; 260():1023-31. PubMed ID: 23892170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive adsorption of pollutants from anodizing wastewaters to promote water reuse.
    Acosta-Herrera AA; Hernández-Montoya V; Castillo-Borja F; Pérez-Cruz MA; Montes-Morán MA; Cervantes FJ
    J Environ Manage; 2021 Sep; 293():112877. PubMed ID: 34098353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of calcium oxalate-bromopyrogallol red inclusion sorbent and application to treatment of cationic dye and heavy metal wastewaters.
    Wang HY; Gao HW
    Environ Sci Pollut Res Int; 2009 May; 16(3):339-47. PubMed ID: 18998184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Governing factors for motor oil removal from water with different sorption materials.
    Rajaković-Ognjanović V; Aleksić G; Rajaković Lj
    J Hazard Mater; 2008 Jun; 154(1-3):558-63. PubMed ID: 18060689
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Roadmap to Sorption-Based Atmospheric Water Harvesting: From Molecular Sorption Mechanism to Sorbent Design and System Optimization.
    Yang K; Pan T; Lei Q; Dong X; Cheng Q; Han Y
    Environ Sci Technol; 2021 May; 55(10):6542-6560. PubMed ID: 33914502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.