These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31804833)

  • 1. Formation of Cubic Ice via Clathrate Hydrate, Prepared in Ultrahigh Vacuum under Cryogenic Conditions.
    Ghosh J; Bhuin RG; Vishwakarma G; Pradeep T
    J Phys Chem Lett; 2020 Jan; 11(1):26-32. PubMed ID: 31804833
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Clathrate hydrates in interstellar environment.
    Ghosh J; Methikkalam RRJ; Bhuin RG; Ragupathy G; Choudhary N; Kumar R; Pradeep T
    Proc Natl Acad Sci U S A; 2019 Jan; 116(5):1526-1531. PubMed ID: 30630945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Desorption-induced evolution of cubic and hexagonal ices in an ultrahigh vacuum and cryogenic temperatures.
    Vishwakarma G; Ghosh J; Pradeep T
    Phys Chem Chem Phys; 2021 Oct; 23(41):24052-24060. PubMed ID: 34665189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clathrate hydrate formation after CO2-H2O vapour deposition.
    Mitterdorfer C; Bauer M; Loerting T
    Phys Chem Chem Phys; 2011 Nov; 13(44):19765-72. PubMed ID: 21952145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Liquid water in the domain of cubic crystalline ice Ic.
    Jenniskens P; Banham SF; Blake DF; McCoustra MR
    J Chem Phys; 1997 Jul; 107(4):1232-41. PubMed ID: 11542399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induced Migration of CO
    Vishwakarma G; Malla BK; Reddy KSSVP; Ghosh J; Chowdhury S; Yamijala SSRKC; Reddy SK; Kumar R; Pradeep T
    J Phys Chem Lett; 2023 Mar; 14(11):2823-2829. PubMed ID: 36912757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reflection high energy electron diffraction (RHEED) study of ice nucleation and growth on Ni(111): influences of adspecies and electron irradiation.
    Souda R; Aizawa T
    Phys Chem Chem Phys; 2019 Sep; 21(35):19585-19593. PubMed ID: 31464304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The formation of cubic ice under conditions relevant to Earth's atmosphere.
    Murray BJ; Knopf DA; Bertram AK
    Nature; 2005 Mar; 434(7030):202-5. PubMed ID: 15758996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate.
    Falenty A; Hansen TC; Kuhs WF
    Nature; 2014 Dec; 516(7530):231-3. PubMed ID: 25503235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Clathrate Hydrates, Hexagonal Ice, Cubic Ice, and Liquid Water in Simulations: the CHILL+ Algorithm.
    Nguyen AH; Molinero V
    J Phys Chem B; 2015 Jul; 119(29):9369-76. PubMed ID: 25389702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ice mixtures formed by simultaneous condensation of formaldehyde and water: an in situ study by micro-Raman scattering.
    Chazallon B; Oancea A; Capoen B; Focsa C
    Phys Chem Chem Phys; 2008 Feb; 10(5):702-12. PubMed ID: 19791454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pressure-amorphized cubic structure II clathrate hydrate: crystallization in slow motion.
    Bauer M; Többens DM; Mayer E; Loerting T
    Phys Chem Chem Phys; 2011 Feb; 13(6):2167-71. PubMed ID: 21103537
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cubic ice Ic without stacking defects obtained from ice XVII.
    Del Rosso L; Celli M; Grazzi F; Catti M; Hansen TC; Fortes AD; Ulivi L
    Nat Mater; 2020 Jun; 19(6):663-668. PubMed ID: 32015533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-Tomographic Investigation of Ice and Clathrate Formation and Decomposition under Thermodynamic Monitoring.
    Arzbacher S; Petrasch J; Ostermann A; Loerting T
    Materials (Basel); 2016 Aug; 9(8):. PubMed ID: 28773789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice particle crystallization in the presence of ethanol: an in situ study by Raman and X-ray diffraction.
    Facq S; Danède F; Chazallon B
    J Phys Chem A; 2013 Jun; 117(23):4916-27. PubMed ID: 23682626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of factors affecting crystallization of cyclopentane clathrate hydrate.
    Whitman CA; Mysyk R; White MA
    J Chem Phys; 2008 Nov; 129(17):174502. PubMed ID: 19045353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ice I
    Komatsu K; Machida S; Noritake F; Hattori T; Sano-Furukawa A; Yamane R; Yamashita K; Kagi H
    Nat Commun; 2020 Feb; 11(1):464. PubMed ID: 32015342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding decomposition and encapsulation energies of structure I and II clathrate hydrates.
    Alavi S; Ohmura R
    J Chem Phys; 2016 Oct; 145(15):154708. PubMed ID: 27782458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Texture change of ice on anomalously preserved methane clathrate hydrate.
    Shimada W; Takeya S; Kamata Y; Uchida T; Nagao J; Ebinuma T; Narita H
    J Phys Chem B; 2005 Mar; 109(12):5802-7. PubMed ID: 16851632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal evolution of acetic acid nanodeposits over 123-180 K on noncrystalline ice and polycrystalline ice studied by FTIR reflection-absorption spectroscopy: hydrogen-bonding interactions in acetic acid and between acetic acid and ice.
    Gao Q; Leung KT
    J Phys Chem B; 2005 Jul; 109(27):13263-71. PubMed ID: 16852654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.