These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31804841)

  • 1. Azidated Graphene: Direct Azidation from Monolayers, Click Chemistry, and Bulk Production from Graphite.
    Li W; Li Y; Xu K
    Nano Lett; 2020 Jan; 20(1):534-539. PubMed ID: 31804841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile, Electrochemical Chlorination of Graphene from an Aqueous NaCl Solution.
    Li W; Li Y; Xu K
    Nano Lett; 2021 Jan; 21(2):1150-1155. PubMed ID: 33448861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sweet graphene I: toward hydrophilic graphene nanosheets via click grafting alkyne-saccharides onto azide-functionalized graphene oxide.
    Namvari M; Namazi H
    Carbohydr Res; 2014 Sep; 396():1-8. PubMed ID: 25079594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile Two-Step Functionalization of Nanocarbons: Grafting of Propargylic Groups and Click Post-Functionalization.
    Desmecht A; Hermans S; Riant O
    ChemistryOpen; 2017 Apr; 6(2):231-235. PubMed ID: 28413757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling of Ligands to the Liposome Surface by Click Chemistry.
    Spanedda MV; De Giorgi M; Hassane FS; Schuber F; Bourel-Bonnet L; Frisch B
    Methods Mol Biol; 2017; 1522():93-106. PubMed ID: 27837533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolayer Doping of Si with Improved Oxidation Resistance.
    O'Connell J; Collins G; McGlacken GP; Duffy R; Holmes JD
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4101-8. PubMed ID: 26812170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction and functionalization of graphene oxide sheets using biomimetic dopamine derivatives in one step.
    Kaminska I; Das MR; Coffinier Y; Niedziolka-Jonsson J; Sobczak J; Woisel P; Lyskawa J; Opallo M; Boukherroub R; Szunerits S
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):1016-20. PubMed ID: 22214550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 7,7,8,8-Tetracyanoquinodimethane-assisted one-step electrochemical exfoliation of graphite and its performance as an electrode material.
    Khanra P; Lee CN; Kuila T; Kim NH; Park MJ; Lee JH
    Nanoscale; 2014 May; 6(9):4864-73. PubMed ID: 24668420
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-Step Electrochemical Preparation of Multilayer Graphene Functionalized with Nitrogen.
    Ustavytska O; Kurys Y; Koshechko V; Pokhodenko V
    Nanoscale Res Lett; 2017 Dec; 12(1):175. PubMed ID: 28279028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single Stage Simultaneous Electrochemical Exfoliation and Functionalization of Graphene.
    Ejigu A; Kinloch IA; Dryfe RA
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):710-721. PubMed ID: 27936538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Double Cu-Catalyzed Direct Csp
    Brandhofer T; Özdemir A; Gini A; Mancheño OG
    Chemistry; 2019 Mar; 25(16):4077-4086. PubMed ID: 30667558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent detection of copper(II) based on DNA-templated click chemistry and graphene oxide.
    Zhou L; Shen Q; Zhao P; Xiang B; Nie Z; Huang Y; Yao S
    Methods; 2013 Dec; 64(3):299-304. PubMed ID: 24051334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Powder, paper and foam of few-layer graphene prepared in high yield by electrochemical intercalation exfoliation of expanded graphite.
    Wu L; Li W; Li P; Liao S; Qiu S; Chen M; Guo Y; Li Q; Zhu C; Liu L
    Small; 2014 Apr; 10(7):1421-9. PubMed ID: 24323826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indirect photopatterning of functionalized organic monolayers via copper-catalyzed "click chemistry".
    Williams MG; Teplyakov AV
    Appl Surf Sci; 2018 Jul; 447():535-541. PubMed ID: 29955204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust Electrografting on Self-Organized 3D Graphene Electrodes.
    Fortgang P; Tite T; Barnier V; Zehani N; Maddi C; Lagarde F; Loir AS; Jaffrezic-Renault N; Donnet C; Garrelie F; Chaix C
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1424-33. PubMed ID: 26710829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards the continuous production of high crystallinity graphene via electrochemical exfoliation with molecular in situ encapsulation.
    Chen CH; Yang SW; Chuang MC; Woon WY; Su CY
    Nanoscale; 2015 Oct; 7(37):15362-73. PubMed ID: 26332120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible-Light-Mediated Click Chemistry for Highly Regioselective Azide-Alkyne Cycloaddition by a Photoredox Electron-Transfer Strategy.
    Wu ZG; Liao XJ; Yuan L; Wang Y; Zheng YX; Zuo JL; Pan Y
    Chemistry; 2020 May; 26(25):5694-5700. PubMed ID: 31953964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes.
    Munuera JM; Paredes JI; Villar-Rodil S; Ayán-Varela M; Martínez-Alonso A; Tascón JM
    Nanoscale; 2016 Feb; 8(5):2982-98. PubMed ID: 26782137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient Graphene Production by Combined Bipolar Electrochemical Intercalation and High-Shear Exfoliation.
    Bjerglund ET; Kristensen MEP; Stambula S; Botton GA; Pedersen SU; Daasbjerg K
    ACS Omega; 2017 Oct; 2(10):6492-6499. PubMed ID: 31457250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards the Synthesis of Graphene Azide from Graphene Oxide.
    Halbig CE; Rietsch P; Eigler S
    Molecules; 2015 Nov; 20(12):21050-7. PubMed ID: 26703526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.