BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 31804941)

  • 1. The Effects of Subcellular Nanograting Geometry on the Formation and Growth of Bacterial Biofilms.
    Lai CQ
    IEEE Trans Nanobioscience; 2020 Apr; 19(2):203-212. PubMed ID: 31804941
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial Attachment, Aggregation, and Alignment on Subcellular Nanogratings.
    Lai CQ
    Langmuir; 2018 Apr; 34(13):4059-4070. PubMed ID: 29509427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Production of Psl in Planktonic Cells Leads to Two Distinctive Attachment Phenotypes in Pseudomonas aeruginosa.
    Yang S; Cheng X; Jin Z; Xia A; Ni L; Zhang R; Jin F
    Appl Environ Microbiol; 2018 Jul; 84(14):. PubMed ID: 29752273
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Psl trails guide exploration and microcolony formation in Pseudomonas aeruginosa biofilms.
    Zhao K; Tseng BS; Beckerman B; Jin F; Gibiansky ML; Harrison JJ; Luijten E; Parsek MR; Wong GCL
    Nature; 2013 May; 497(7449):388-391. PubMed ID: 23657259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Rose Petal Surfaces Delay the Early-Stage Bacterial Biofilm Growth.
    Cao Y; Jana S; Bowen L; Tan X; Liu H; Rostami N; Brown J; Jakubovics NS; Chen J
    Langmuir; 2019 Nov; 35(45):14670-14680. PubMed ID: 31630525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Matrix Polysaccharides and SiaD Diguanylate Cyclase Alter Community Structure and Competitiveness of
    Chew SC; Yam JKH; Matysik A; Seng ZJ; Klebensberger J; Givskov M; Doyle P; Rice SA; Yang L; Kjelleberg S
    mBio; 2018 Nov; 9(6):. PubMed ID: 30401769
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale investigation on Pseudomonas aeruginosa biofilm formed on porous silicon using atomic force microscopy.
    Kannan A; Karumanchi SL; Krishna V; Thiruvengadam K; Ramalingam S; Gautam P
    Scanning; 2014; 36(5):551-3. PubMed ID: 25042006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms.
    Klausen M; Aaes-Jørgensen A; Molin S; Tolker-Nielsen T
    Mol Microbiol; 2003 Oct; 50(1):61-8. PubMed ID: 14507363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.
    Ma L; Conover M; Lu H; Parsek MR; Bayles K; Wozniak DJ
    PLoS Pathog; 2009 Mar; 5(3):e1000354. PubMed ID: 19325879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry.
    Epstein AK; Hochbaum AI; Kim P; Aizenberg J
    Nanotechnology; 2011 Dec; 22(49):494007. PubMed ID: 22101439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of bacterial cells with cluster-assembled nanostructured titania surfaces: an atomic force microscopy study.
    Singh AV; Galluzzi M; Borghi F; Indrieri M; Vyas V; Podestà A; Gade WN
    J Nanosci Nanotechnol; 2013 Jan; 13(1):77-85. PubMed ID: 23646700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Psl Produced by Mucoid
    Jones CJ; Wozniak DJ
    mBio; 2017 Jun; 8(3):. PubMed ID: 28634241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli O157:H7 requires colonizing partner to adhere and persist in a capillary flow cell.
    Klayman BJ; Volden PA; Stewart PS; Camper AK
    Environ Sci Technol; 2009 Mar; 43(6):2105-11. PubMed ID: 19368221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Type I Fimbriae and Fluid Shear Stress on Bacterial Behavior and Multicellular Architecture of Early Escherichia coli Biofilms at Single-Cell Resolution.
    Wang L; Keatch R; Zhao Q; Wright JA; Bryant CE; Redmann AL; Terentjev EM
    Appl Environ Microbiol; 2018 Mar; 84(6):. PubMed ID: 29330179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-eluting, surface-bound enzymes disrupt surface attachment of bacteria by continuous biofilm polysaccharide degradation.
    Asker D; Awad TS; Baker P; Howell PL; Hatton BD
    Biomaterials; 2018 Jun; 167():168-176. PubMed ID: 29571052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Association of some Campylobacter jejuni with Pseudomonas aeruginosa biofilms increases attachment under conditions mimicking those in the environment.
    Teh AHT; Lee SM; Dykes GA
    PLoS One; 2019; 14(4):e0215275. PubMed ID: 30970009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of flow cell geometry related shear stresses on the distribution, structure and susceptibility of Pseudomonas aeruginosa 01 biofilms.
    Salek MM; Jones SM; Martinuzzi RJ
    Biofouling; 2009 Nov; 25(8):711-25. PubMed ID: 20183130
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molybdenum Disulfide Surfaces to Reduce
    Amin M; Rowley-Neale S; Shalamanova L; Lynch S; Wilson-Nieuwenhuis JT; El Mohtadi M; Banks CE; Whitehead KA
    ACS Appl Mater Interfaces; 2020 May; 12(18):21057-21069. PubMed ID: 32289218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effect of polyaniline coverage and surface microstructure on the inhibition of Pseudomonas aeruginosa biofilm formation.
    Gallarato LA; Mulko LE; Dardanelli MS; Barbero CA; Acevedo DF; Yslas EI
    Colloids Surf B Biointerfaces; 2017 Feb; 150():1-7. PubMed ID: 27863264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Attachment of Pseudomonas aeruginosa with Binary Colloidal Crystal-Based Topographies.
    Pingle H; Wang PY; Thissen H; Kingshott P
    Small; 2018 Apr; 14(14):e1703574. PubMed ID: 29484803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.