These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 31804942)

  • 1. Formator: Predicting Lysine Formylation Sites Based on the Most Distant Undersampling and Safe-Level Synthetic Minority Oversampling.
    Jia C; Zhang M; Fan C; Li F; Song J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(5):1937-1945. PubMed ID: 31804942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of lysine formylation sites using support vector machine based on the sample selection from majority classes and synthetic minority over-sampling techniques.
    Sohrawordi M; Hossain MA
    Biochimie; 2022 Jan; 192():125-135. PubMed ID: 34627982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. dForml(KNN)-PseAAC: Detecting formylation sites from protein sequences using K-nearest neighbor algorithm via Chou's 5-step rule and pseudo components.
    Ning Q; Ma Z; Zhao X
    J Theor Biol; 2019 Jun; 470():43-49. PubMed ID: 30880183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of lysine formylation sites using the composition of k-spaced amino acid pairs via Chou's 5-steps rule and general pseudo components.
    Ju Z; Wang SY
    Genomics; 2020 Jan; 112(1):859-866. PubMed ID: 31175975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. predForm-Site: Formylation site prediction by incorporating multiple features and resolving data imbalance.
    Islam MKB; Rahman J; Hasan MAM; Ahmad S
    Comput Biol Chem; 2021 Oct; 94():107553. PubMed ID: 34384997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting lysine glycation sites using bi-profile bayes feature extraction.
    Ju Z; Sun J; Li Y; Wang L
    Comput Biol Chem; 2017 Dec; 71():98-103. PubMed ID: 29040908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inspector: a lysine succinylation predictor based on edited nearest-neighbor undersampling and adaptive synthetic oversampling.
    Zhu Y; Jia C; Li F; Song J
    Anal Biochem; 2020 Mar; 593():113592. PubMed ID: 31968210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Oct; 77():200-204. PubMed ID: 28886434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting lysine lipoylation sites using bi-profile bayes feature extraction and fuzzy support vector machine algorithm.
    Ju Z; Wang SY
    Anal Biochem; 2018 Nov; 561-562():11-17. PubMed ID: 30218638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of protein N-formylation using the composition of k-spaced amino acid pairs.
    Ju Z; Cao JZ
    Anal Biochem; 2017 Oct; 534():40-45. PubMed ID: 28709899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nepsilon-formylation of lysine is a widespread post-translational modification of nuclear proteins occurring at residues involved in regulation of chromatin function.
    Wisniewski JR; Zougman A; Mann M
    Nucleic Acids Res; 2008 Feb; 36(2):570-7. PubMed ID: 18056081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. nhKcr: a new bioinformatics tool for predicting crotonylation sites on human nonhistone proteins based on deep learning.
    Chen YZ; Wang ZZ; Wang Y; Ying G; Chen Z; Song J
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34002774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CarSite-II: an integrated classification algorithm for identifying carbonylated sites based on K-means similarity-based undersampling and synthetic minority oversampling techniques.
    Zuo Y; Lin J; Zeng X; Zou Q; Liu X
    BMC Bioinformatics; 2021 Apr; 22(1):216. PubMed ID: 33902446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-SulfPred: A sensitive predictor to capture S-sulfenylation sites based on a resampling one-sided selection undersampling-synthetic minority oversampling technique.
    Jia C; Zuo Y
    J Theor Biol; 2017 Jun; 422():84-89. PubMed ID: 28411111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysine acetylation sites prediction using an ensemble of support vector machine classifiers.
    Xu Y; Wang XB; Ding J; Wu LY; Deng NY
    J Theor Biol; 2010 May; 264(1):130-5. PubMed ID: 20085770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2016 May; 397():145-50. PubMed ID: 26908349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational methods for ubiquitination site prediction using physicochemical properties of protein sequences.
    Cai B; Jiang X
    BMC Bioinformatics; 2016 Mar; 17():116. PubMed ID: 26940649
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Position-specific analysis and prediction of protein pupylation sites based on multiple features.
    Zhao X; Dai J; Ning Q; Ma Z; Yin M; Sun P
    Biomed Res Int; 2013; 2013():109549. PubMed ID: 24066285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RAM-PGK: Prediction of Lysine Phosphoglycerylation Based on Residue Adjacency Matrix.
    Chandra AA; Sharma A; Dehzangi A; Tsunoda T
    Genes (Basel); 2020 Dec; 11(12):. PubMed ID: 33419274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.