These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31804952)

  • 1. Quantitative prediction of enhancer-promoter interactions.
    Belokopytova PS; Nuriddinov MA; Mozheiko EA; Fishman D; Fishman V
    Genome Res; 2020 Jan; 30(1):72-84. PubMed ID: 31804952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico prediction of high-resolution Hi-C interaction matrices.
    Zhang S; Chasman D; Knaack S; Roy S
    Nat Commun; 2019 Dec; 10(1):5449. PubMed ID: 31811132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A predictive modeling approach for cell line-specific long-range regulatory interactions.
    Roy S; Siahpirani AF; Chasman D; Knaack S; Ay F; Stewart R; Wilson M; Sridharan R
    Nucleic Acids Res; 2015 Oct; 43(18):8694-712. PubMed ID: 26338778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leveraging three-dimensional chromatin architecture for effective reconstruction of enhancer-target gene regulatory interactions.
    Salviato E; Djordjilović V; Hariprakash JM; Tagliaferri I; Pal K; Ferrari F
    Nucleic Acids Res; 2021 Sep; 49(17):e97. PubMed ID: 34197622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EAGLE: An algorithm that utilizes a small number of genomic features to predict tissue/cell type-specific enhancer-gene interactions.
    Gao T; Qian J
    PLoS Comput Biol; 2019 Oct; 15(10):e1007436. PubMed ID: 31665135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In the loop: promoter-enhancer interactions and bioinformatics.
    Mora A; Sandve GK; Gabrielsen OS; Eskeland R
    Brief Bioinform; 2016 Nov; 17(6):980-995. PubMed ID: 26586731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential regulatory activity prediction across chromosomes with convolutional neural networks.
    Kelley DR; Reshef YA; Bileschi M; Belanger D; McLean CY; Snoek J
    Genome Res; 2018 May; 28(5):739-750. PubMed ID: 29588361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrative prediction of gene expression with chromatin accessibility and conformation data.
    Schmidt F; Kern F; Schulz MH
    Epigenetics Chromatin; 2020 Feb; 13(1):4. PubMed ID: 32029002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancer prediction with histone modification marks using a hybrid neural network model.
    Lim A; Lim S; Kim S
    Methods; 2019 Aug; 166():48-56. PubMed ID: 30905748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MSTD: an efficient method for detecting multi-scale topological domains from symmetric and asymmetric 3D genomic maps.
    Ye Y; Gao L; Zhang S
    Nucleic Acids Res; 2019 Jun; 47(11):e65. PubMed ID: 30941409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide mapping of promoter-anchored interactions with close to single-enhancer resolution.
    Sahlén P; Abdullayev I; Ramsköld D; Matskova L; Rilakovic N; Lötstedt B; Albert TJ; Lundeberg J; Sandberg R
    Genome Biol; 2015 Aug; 16(1):156. PubMed ID: 26313521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancer target prediction: state-of-the-art approaches and future prospects.
    Umarov R; Hon CC
    Biochem Soc Trans; 2023 Oct; 51(5):1975-1988. PubMed ID: 37830459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancer Associated Long Non-coding RNA Transcription and Gene Regulation in Experimental Models of Rickettsial Infection.
    Chowdhury IH; Narra HP; Sahni A; Khanipov K; Fofanov Y; Sahni SK
    Front Immunol; 2018; 9():3014. PubMed ID: 30687302
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-species regulatory sequence activity prediction.
    Kelley DR
    PLoS Comput Biol; 2020 Jul; 16(7):e1008050. PubMed ID: 32687525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TAD boundary and strength prediction by integrating sequence and epigenetic profile information.
    Wang Y; Liu Y; Xu Q; Xu Y; Cao K; Deng N; Wang R; Zhang X; Zheng R; Li G; Fang Y
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33866359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A computational approach for the functional classification of the epigenome.
    Gandolfi F; Tramontano A
    Epigenetics Chromatin; 2017; 10():26. PubMed ID: 28515787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Processing and Quality Control of Hi-C, Capture Hi-C and Capture-C Data.
    Hansen P; Gargano M; Hecht J; Ibn-Salem J; Karlebach G; Roehr JT; Robinson PN
    Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31323892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CTCF-mediated chromatin loops enclose inducible gene regulatory domains.
    Oti M; Falck J; Huynen MA; Zhou H
    BMC Genomics; 2016 Mar; 17():252. PubMed ID: 27004515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global view of enhancer-promoter interactome in human cells.
    He B; Chen C; Teng L; Tan K
    Proc Natl Acad Sci U S A; 2014 May; 111(21):E2191-9. PubMed ID: 24821768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.